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We analyze a large system of heterogeneous quadratic integrate-and-fire (QIF) neurons with time delayed,
all-to-all synaptic coupling. The model is exactly reduced to a system of firing rate equations that is exploited to
investigate the existence, stability, and bifurcations of fully synchronous, partially synchronous, and incoherent
states. In conjunction with this analysis we perform extensive numerical simulations of the original network
of QIF neurons, and determine the relation between the macroscopic and microscopic states for partially
synchronous states. The results are summarized in two phase diagrams, for homogeneous and heterogeneous
populations, which are obtained analytically to a large extent. For excitatory coupling, the phase diagram is
remarkably similar to that of the Kuramoto model with time delays, although here the stability boundaries extend
to regions in parameter space where the neurons are not self-sustained oscillators. In contrast, the structure of
the boundaries for inhibitory coupling is different, and already for homogeneous networks unveils the presence
of various partially synchronized states not present in the Kuramoto model: Collective chaos, quasiperiodic
partial synchronization (QPS), and a novel state which we call modulated-QPS (M-QPS). In the presence of
heterogeneity partially synchronized states reminiscent to collective chaos, QPS and M-QPS persist. In addition,
the presence of heterogeneity greatly amplifies the differences between the incoherence stability boundaries of
excitation and inhibition. Finally, we compare our results with those of a traditional (Wilson Cowan-type) firing
rate model with time delays. The oscillatory instabilities of the traditional firing rate model qualitatively agree
with our results only for the case of inhibitory coupling with strong heterogeneity.
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I. INTRODUCTION

Since the seminal work of Hodgkin and Huxley [1], spiking
neuron models have been the standard mathematical tool
to investigate the collective dynamics of neuronal networks.
These models account for the basic properties of neurons—
sub-threshold voltage dynamics, spiking, and discontinuous
synaptic interactions—and hence networks of spiking neurons
are considered to be biologically realistic. Yet, network mod-
els of spiking neurons are generally not amenable to analysis
and hence mostly constitute a computational tool.

Alternatively, researchers use simplified models which de-
scribe some measure of the mean activity in a population
of cells, customarily taken as the firing rate [2]. Such mean
field models (that here we call “traditional firing rate models”
or simply “firing rate models”) faithfully capture the main
types of qualitative dynamical states observed in large pop-
ulations of asynchronously spiking neurons, and can be math-
ematically analyzed using standard techniques for differential
equations; see, e.g., Refs. [3–6]. Despite their popularity,
traditional firing rate models have two major limitations which
strongly limit their range of applicability in neuroscience.
First, these models are not accurate in describing the dynamics
of collective states where a significant fraction of the neurons
fires spikes in synchrony. Second, firing rate models do not
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generally represent proper mathematical reductions of the
original network but rather are heuristic. As such there is
in general no precise relationship between the parameters in
the traditional firing rate model and those in the full network
of spiking neurons, and thus there is no clear link between
the macroscopic states of the network with the microscopic
dynamics of the constituent neurons.

An important example of the application of traditional
firing rate models occurs in the analysis of neuronal networks
with time delays. It is well-known that synaptic and dendritic
processing, as well as axonal propagation, produce unavoid-
able time delays in the neuronal interactions which profoundly
shape the oscillatory dynamics of spiking neuron networks.
The study of large networks of spiking neurons with time
delays is convoluted, and in this context the mathematical
and numerical analysis of firing rate descriptions have been
particularly productive; see, e.g., Refs. [7–25]. Yet, how much
of the actual dynamics of a large network of spiking neurons
with synaptic delays can be captured using traditional firing
rate descriptions?

In this paper, we investigate the collective dynamics of
a large system of heterogeneous quadratic integrate-and-fire
(QIF) neurons with synaptic delays. To perform the analysis
we exploit a novel low-dimensional firing rate model that can
be exactly derived from the population of QIF neurons [26].
Therefore we use a system of firing rate equations (FRE)
that, in contrast with traditional firing rate models, faithfully
reproduce all possible collective states of the network. The
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mathematical analysis of the FRE allows us to obtain ex-
act formulas for the boundaries of stability of asynchronous
states in both homogeneous and heterogeneous networks. In
conjunction with this analysis, we conduct numerical sim-
ulations of the corresponding network of QIF neurons to
investigate the microscopic states associated with the macro-
scopic dynamics of the FRE. This combined analysis reveals
the presence of large regions of oscillatory states which are
unreachable using traditional firing rate models. Some of
these states are particularly interesting and we investigate
them in detail. They already arise in populations of identical
inhibitory neurons, in parameter regions where both the fully
synchronous and the asynchronous states are unstable. Hence,
in these regimes, the system settles somewhere in between
full order and disorder, at a state often called “partial syn-
chrony” [27]. Such partially synchronous states in networks
of identical units are self-organized collective states in which
the properties of the mean field cannot be trivially inferred
from the intrinsic dynamics of the units, but are an emergent
property of the network. Here we find three different types of
partially synchronous states (with periodic, quasiperiodic, and
chaotic mean field dynamics) and also investigate how these
states change as neurons are made heterogeneous.

Our work builds primarily on the results by two of the
authors [28] about the dynamics of networks of identical,
self-oscillatory QIF neurons. Here we extend the results
in Ref. [28] in several ways:

(1) The analysis is not restricted to self-oscillating QIF
neurons, but extends to networks of excitable QIF neurons.

(2) We perform a detailed numerical exploration of the
partially synchronous states and their bifurcations, supported
by the systematic computation of the Lyapunov exponents.
This allows us to uncover a transition to a novel state which
we call modulated quasiperiodic partial synchronization (M-
QPS), as well as a “quasiperiodic route” to collective chaos.
Additionally we investigate how partially synchronous states
transform as neurons are made heterogeneous. To the best of
our knowledge, this problem has not been addressed in pre-
vious work investigating partial synchronization in different
populations of identical oscillators [29–41].

(3) We obtain the phase diagram corresponding to popula-
tions of heterogeneous QIF neurons. Heterogeneity magnifies
the difference between the dynamics of inhibitory and exci-
tatory networks. The phase diagram is finally compared with
that of a traditional firing rate model, which we heuristically
obtain from the exact FRE obtained in Ref. [26]. The oscil-
latory instabilities of the two firing rate models qualitatively
agree only for the case of inhibitory networks with strong
heterogeneity.

The paper is organized as follows. In Sec. II we present
the time delayed QIF network model under study. In Sec. III
we introduce and discuss the low-dimensional FRE de-
rived, in the large system-size limit, from the QIF network.
In Sec. IV we complement the theoretical analysis of the
FRE with numerical simulations of the partially synchronous
states (QPS, M-QPS, collective chaos). In Sec. V we an-
alyze the effect of heterogeneities in the system dynam-
ics. Finally, in Sec. VI we discuss our results and com-
pare them with those obtained using a traditional firing rate
description.

II. MODEL DESCRIPTION

We consider a network of N � 1 all-to-all coupled QIF
neurons. The membrane potential of the neurons is governed
by the following quadratic differential equation [42]:

τ V̇j = V 2
j + Ij j = 1, . . . , N, (1)

where τ is a time constant. Every time the membrane potential
of a neuron reaches an upper threshold Vth � 1 it is said to
fire. Obviously, in addition to Eq. (1), one must define a spike-
resetting condition:

If Vj > Vth, then Vreset ← Vj . (2)

In our theoretical analysis we consider the limits Vth =
−Vreset → ∞, which is faithfully reproduced in numerical
simulations in the following way: first, we consider Vth =
−Vreset = 500. Then, after the firing, we set the neuron at Vreset

after an inactive period of 2τ/Vth. This is the approximate
time that a neuron needs to reach +∞ from Vth and return
from −∞ to Vreset [43].

The input in Eq. (1) is determined by two distinct contribu-
tions:

Ij = ηj + J s(t ). (3)

The first term represents the quenched heterogeneity, which
for neurons in the oscillatory regime (ηj > 0), determines the
intrinsic interspike interval (ISI),

Tj = πτ/
√

ηj . (4)

The second term corresponds to the mean field coupling,
where J is the coupling strength and s(t ) is the mean synaptic
activation. We consider networks of spiking neurons with
delayed, mean-field coupling,

s(t ) = τ

Nτs

N∑
j=1

∑
k

∫ t−D

t−D−τs

δ
(
t ′ − t kj

)
dt ′, (5)

where t kj is the time of the kth spike of neuron j , and τs

the synaptic time constant. After adopting the thermodynamic
limit, N → ∞, we take the limit τs → 0, so that s becomes
proportional to the instantaneous population-averaged firing
rate at time t − D:

lim
τs→0

lim
N→∞

s(t ) = τ r (t − D) ≡ τ rD.

Finally, we assume a Lorentzian (Cauchy) distribution of the
quenched heterogeneity,

g(η) = �/π

(η − η̄)2 + �2
. (6)

III. LOW-DIMENSIONAL DESCRIPTION:
FIRING RATE EQUATIONS

In the thermodynamic limit, the network of QIF neurons
can be reduced to a finite set of FRE [26,44]. This is possible
assuming that the conditional neuron densities ρ(V |η, t ) are
Lorentzian for all η values [26], which is mathematically
equivalent as to invoke the so-called Ott-Antonsen (OA) the-
ory [45].

Specifically, the original work by Ott and Antonsen applies
to the Kuramoto model, and it shows that the model admits
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an exact, low-dimensional description in terms of the Ku-
ramoto order parameter [45]. The same theory holds for large
populations of globally pulse-coupled oscillators [46], and in
particular for ensembles of θ neurons [47–52]. The θ -neuron
phase-model can be transformed to a voltage-based descrip-
tion, the QIF model [53]. Similarly, the macroscopic descrip-
tion for networks of θ neurons (in terms of the Kuramoto
order parameter) transforms into a more natural description
for ensembles of QIF neurons in terms of two mean-field
quantities of particular relevance in neuroscience: the mean
firing rate and the mean membrane potential [26].

Such firing rate description for ensembles of QIF neurons
is remarkably simple and amenable to mathematical analysis.
This has motivated a number of recent extensions of the FRE
for QIF neurons to a number of different setups [54–61]. In
particular, considering the QIF model in Sec. II, the FRE
consist of a system of two delay differential equations for the
firing rate r and for the mean membrane potential,

v =
∫ ∞

−∞
dη g(η)

[
lim

R→∞

∫ R

−R

dV ρ(V |η, t )V

]
,

which read [26,28]

τ ṙ = �

πτ
+ 2rv, (7a)

τ v̇ = v2 + η̄ − (πτr )2 + JτrD. (7b)

These FRE describe the evolution of the population of
infinitely many spiking neurons in terms of the firing rate r

and the mean-membrane potential v of the population of QIF
neurons Eq. (1). Equations (7) have five parameters, which
can be reduced to three by nondimensionalization. In Ref. [28]
the FRE Eqs. (7) were analyzed under the restriction η̄ > 0,
and they were rescaled accordingly. Such rescaling allows to
systematically vary the time delay parameter D (including the
case D = 0), and facilitates the comparison with the classical
and well-studied Kuramoto model with delay [62–66].

Alternatively, here we consider a new nondimensionaliza-
tion which allows us to investigate the dynamics of the FRE
Eqs. (7) in the entire range of η̄, so that the majority of
the neurons can be either self-oscillatory (η̄ > 0) or quies-
cent/excitable (η̄ < 0). Specifically, we rescale time and v by
D and τ as

t̃ = D−1t , ṽ = Dτ−1v, (8)

so that the new, nondimensional rate is r̃ = Dr . Then the
dynamics of the FRE can be completely explored, without loss
of generality, considering the rescaled parameters

J̃ = Dτ−1J , ˜̄η = D2τ−2η̄ , �̃ = D2τ−2�,

and setting τ = D = 1 in Eqs. (7). Specifically, we investigate
the nondimensional system of equations

dr̃

dt̃
= �̃

π
+ 2r̃ ṽ, (9a)

dṽ

dt̃
= ṽ2 + ˜̄η − (πr̃ )2 + J̃ r̃D=1. (9b)

To lighten the notation we drop the tildes hereafter (also in
the figure labels).

IV. POPULATIONS OF IDENTICAL NEURONS

As we discussed previously, the case of identical oscilla-
tory neurons has been investigated in Ref. [28] using a certain
rescaling that required η̄ > 0. Here we adopt the rescaling
in Eq. (8), which allows us for an exhaustive investigation
of the dynamics of the system by systematically varying the
parameter η̄.

Before starting the analysis, we emphasize that the
Lorentzian ansatz (or the equivalent OA ansatz) is not strictly
valid for identical oscillators. In this case the system is par-
tially integrable and its phase space is foliated by a continuum
of invariant manifolds, being the Lorentzian ansatz a partic-
ular one. Actually, for the case of identical neurons (� = 0),
the correct approach is to resort to the so-called Watanabe-
Strogatz theory [67], instead of the OA ansatz [60,68]. Never-
theless, from a physical perspective the OA/Lorentzian ansatz
is very significant since any small amount of noise and/or
heterogeneity destroys the degeneracy and, at least for the
systems analyzed so far, the density converges to a vicinity
of the OA manifold [69].

Hence, in the following we analyze the identical case
taking into account that its full significance holds once a small
amount of noise or heterogeneity is added to the system.
However, to avoid the inclusion of noise/heterogeneity in
the integration algorithm, we use initial conditions in the
Lorentzian manifold in all the numerical simulations of en-
sembles of identical QIF neurons Eqs. (1).

A. Analytical results: The incoherent and the fully
synchronized states

1. The incoherent state

Equation (9) has at most four fixed points. In some param-
eter values one of these points is located in the negative rate
region (r < 0), and we refer to it as “unphysical.” Moreover,
for � = 0, the axis r = 0 is invariant so that solutions initiated
with r (0) > 0 remain positive for all times. The equilibria of
Eqs. (9) can be grouped into two sets of fixed points:

(1) The first pair of fixed points is located in the (r, v)
plane at

a± =
(

J ±
√

J 2 + 4π2η̄

2π2
, 0

)
.

For J > 0, these fixed points are born at a saddle-node bifur-
cation located at

Jsn = 2π
√−η̄.

This line is partly depicted as a solid green straight line in the
phase diagram Fig. 1, and is located in the region η̄ < 0. Note
that the fixed point a− becomes unphysical for η̄ > 0, while
a+ exists for J < 0 only if η̄ > 0. As shown below, the fixed
point a+ is stable in a wide range of parameter values. We
will refer to a+ as the incoherent, or the asynchronous state.
For finite networks a+ becomes a so-called splay state, with
all neurons firing with the same ISI, and one neuron firing
every ISI/N time units.

(2) The second pair of fixed points,

q± = (0,±√−η̄),
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FIG. 1. Phase diagram for identical neurons, � = 0. Shaded
region: The asynchronous state (a+) is stable. Slantwise hatched
region: full synchrony is unstable. Horizontally hatched region: The
fully synchronized state does not exist and the only attractor is the
global rest state q−. The orbit of fully synchronized self-sustained
oscillations is created at the dashed black line (at η̄ < 0), Eq. (14).
Blue and red lines are the loci of the sub- and super-critical Hopf-like
instabilities of incoherence Eqs. (10). Solid green line: saddle-node
bifurcation. The vertical dashed green line separates the oscillatory
from the excitable regime of the QIF neuron.

only exists for η̄ < 0. They correspond to quiescent states, and
coincide with the fixed points of an individual QIF neuron.
Hence, q− (respectively, q+) is trivially stable (unstable). The
bifurcation at η̄ = 0 (green dashed line in Fig. 1) is somewhat
peculiar because it is not a simple saddle-node bifurcation of
q+ and q− as expected. For J > 0, it involves the simultane-
ous collision with a−, while for J < 0 it coincides with the
appearance of a+ for η̄ > 0.

Next we study the linear stability of the fixed points.
The incoherent state a− is always unstable, while the linear
stability analysis of the high activity, asynchronous state
a+ reveals interesting features. Imposing the condition of
marginal stability λ = i� in the linearization of Eq. (9), we
find a family of oscillatory instabilities at

J
(n)
H = π

(
�2

n − 4η̄
) ×

{(
6�2

n + 12η̄
)−1/2

, odd n,(
2�2

n − 4η̄
)−1/2

, even n,
(10)

where �n = nπ . We point out that these instabilities (repre-
sented as blue and red lines in the phase diagram Fig. 1) are
actually Hopf-like, rather than Hopf, because of two facts:
(i) The amplitude equations, computed in the Supplemental
Material of [28], are degenerated. (ii) In the supercritical
case, we find that the emerging limit cycle has a period
2π/�n, which remains constant as one moves away from
threshold. This is apparently related to the reversible character
of Eqs. (9) for �̃ = 0 (note the invariance t → −t , v → −v)

that, as argued in Ref. [28], stabilizes symmetric orbits with
fixed periods when D is nonzero.

2. The fully synchronized state

Besides the stability boundary of the asynchronous state,
we can also analytically determine the boundaries of full
synchrony, Vj = V (t ), ∀j . The FRE Eq. (9) are not suitable
for this analysis, since the fully synchronized state corre-
sponds to a degenerate infinite trajectory along the v axis. Full
synchrony is hence investigated using the original Eqs. (1).

As shown in Ref. [28], for oscillatory dynamics (η̄ > 0) the
stability region of full synchrony is bounded by the family of
curves

J (n′ )
s = 2

√
η̄ cot

(√
η̄

n′

)
with n′ = 1, 3, .., (11)

and by the evenly spaced lines
√

η̄ = mπ with m = 1, 2, 3, ....
However, in the case η̄ < 0, we emphasize that the term

“full synchronization” cannot be strictly used since the neu-
rons are excitable and not self-sustained oscillators. However,
to simplify the notation, in the following we refer to collective
oscillatory states with η̄ < 0 as fully synchronized states.
Indeed, due to the presence of time delay, collective self-
sustained oscillations could be in principle maintained for
strong enough excitatory coupling. To study the existence and
stability of these states, we rewrite the QIF model Eq. (1) as

V̇j = V 2
j − |η̄| + J rD. (12)

Then, to investigate the existence of a fully synchronized state,
we can drop the index j in Eq. (12). Note that, in the absence
of coupling, Eq. (12) has one stable (s) and one unstable (u)
fixed points

V ∗
u = −V ∗

s =
√

|η|.
Between consecutive spikes, the evolution of the membrane
potential of all neurons is given by

V̇ = V 2 − |η̄|. (13)

Considering that the neurons’ membrane potentials reach
infinity at t = 0, we find that their membrane potentials at the
time immediately before receiving the spike, t = D− = 1−,
must satisfy the following equation:∫ V (1−)

−∞

dV

V 2 − |η̄| = 1,

which gives

V
(
1−) ≡ V − = −

√
|η̄| coth

√
|η̄|.

A necessary condition for the existence of self-sustained
collective oscillations is that an excitatory spike causes a
jump in V beyond the unstable fixed point, which enables
the repetition of the cycle. More precisely, immediately after
receiving the first spike, t = 1+, the membrane potential V +
must satisfy V + > V ∗

u . Then, for η̄ < 0, we find that fully
synchronized solutions exist above the critical coupling,

Jc = V ∗
u − V − = 2

√
|η̄| e2

√|η̄|

e2
√|η̄| − 1

. (14)
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To analyze the stability of full synchrony, we study the evo-
lution of an infinitesimal perturbation δV of a single neuron
membrane potential away from the cluster formed by the
rest of the population. The perturbed neuron and the cluster
before the incoming spike evolve according to the flow given
by Eq. (13). The multiplier of the linearized flow ( ˙δV =
2V δV ) is antisymmetric causing convergence for negative V ,
and divergence for positive V . Hence, to have a stable fully
synchronous solution, the neurons need to spend more time
in the convergent region of the flow than in the divergent
one. This holds if the instantaneous jump of the membrane
potential due to the incoming spike is large enough. Then the
critical coupling corresponds to V + = |V −|, i.e., Js = 2|V −|,
or

Js = 2
√

|η̄| coth
√

|η̄|. (15)

This function is precisely the boundary in Eq. (11) with n′ =
1, which extends to the negative η̄ region, since cot(ix) =
−i coth(x). Note also that Js approaches Jc as η̄ → −∞.

B. Phase diagram

The phase diagram shown in Fig. 1 summarizes our ana-
lytical results for populations of identical neurons. On the y

axis we represent the coupling strength J , which can be either
excitatory or inhibitory. On the x axis we represent a quantity
that, if positive, is proportional to the natural frequency of the
neurons; see Eq. (4). Regions with qualitatively different dy-
namics are highlighted with different combinations of colors
and patterns. In the gray shaded regions, the asynchronous
state a+ is stable, while slantwise hatching indicates insta-
bility of the fully synchronized state. On the other hand, in
the horizontally hatched area, the global quiescent state q−
is the only attractor of the system. In the unhatched white
region, full synchrony is a stable attractor (and typically the
only one—see below), but several of such states may coexist
in certain regions for η̄ > 0.

More specifically, in the excitable region (η̄ < 0) of the
diagram the global quiescent state q− is always stable. In ad-
dition, the stability region of the asynchronous state a+ (gray
shading) is bounded by the saddle-node bifurcation Jsn (green
line), and the Hopf-like bifurcation line J

(1)
H , Eq. (10) (blue

line). The two lines meet at a Zero-Hopf codimension-two
point. In the unhatched gray region a+ coexists not only with
q− but also with the fully synchronized state. This oscillatory
state becomes stable at the solid black line Eq. (15).

On the other hand, the positive η̄ region of the diagram
is characterized by a sequence of subcritical (blue lines) and
supercritical (red lines) Hopf-like bifurcations, defined by
Eq. (10), that switch the stability of the incoherent state a+.
Remarkably, in this region (where neurons are self-sustained
oscillators), the phase diagram bears strong resemblance with
that of the Kuramoto model with time delays [62–66]. The
two systems display tent-shaped regions with an even spacing
given by the equality between the delay (D = 1) and the
intrinsic ISI Eq. (4), as well as bistability regions between
full sync and incoherence (unhatched gray regions). However,
while in the Kuramoto model the Hopf bifurcations are always
subcritical, here we find supercritical Hopf bifurcations for
some η̄ values in the inhibitory (J < 0) part of the diagram.

Near the supercritical Hopf bifurcations, in the unshaded
hatched region, both the incoherent and the fully synchronous
states are unstable, and partial synchrony (QPS, M-QPS, and
collective chaos) is found. In the next section we classify
these states in terms of their macroscopic and microscopic
dynamics, and investigate their bifurcations.

Finally, we discuss an interesting feature of the phase
diagram in Fig. 1—see also the phase diagram in Ref. [28].
Note that, at variance with the vertically oriented, tent-shaped
regions of the Kuramoto model [62–66], here the regions
of stability are tilted. This discrepancy between populations
of QIF neurons and the Kuramoto model can be understood
as follows: in the QIF model the neurons always advance
their phase in response to excitatory inputs, and always delay
their phase in response to inhibitory inputs—i.e., they have
a so-called Type 1 phase resetting curve. This produces the
progressive “advancement” of the boundaries in the excitatory
part of the phase diagram as the strength of the excitatory
coupling J is increased—given that neurons increase their
firing frequency and thus their effective value of η̄. Similarly,
in the inhibitory region, the neurons slow down their firing fre-
quency in response to inhibitory inputs, and this progressively
“delays” the boundaries for J < 0. In contrast, in the classical
Kuramoto model, the terms producing advances and delays
in response to excitation and inhibition are not included [70],
and hence the boundaries are not tilted.

C. Numerical analysis of partially synchronous states

Next we perform a numerical exploration of the par-
tially synchronized states arising both in the white slantwise-
hatched region of Fig. 1, as well as in some neighboring
regions. In Table I these partially synchronized states are
classified according to their dynamics, both for identical and
for heterogeneous (in Sec. V) populations of QIF neurons. The
macroscopic dynamics of the states is investigated performing
numerical simulations of the FRE Eq. (9), and illustrated
in the columns 1 and 2 of Fig. 2. To investigate the single
neuron dynamics associated to the macroscopic states we also
performed numerical simulations of the original system of
QIF neurons Eqs. (1), and depicted the raster plots (column 3),
and the ISI return maps (column 4) and histograms (column
5). Finally, in column 1, we also show the time series of
the population-mean firing rate of the network simulations
(dashed red lines), which show a perfect agreement with the
time series of the FRE (blue lines)—except in panel (d1),
where the collective dynamics is chaotic.

Note that stable partially synchronized states are not only
found in the slantwise-hatched region of Fig. 1, but also in
a neighborhood of this region with

√
η̄ > π . This is because

the region where the Hopf-like bifurcation J
(1)
H is supercrit-

ical (around the red line at
√

η̄ ≈ π in Fig. 1) extends to√
η̄ > π , and hence one expects a low-amplitude periodic

solution bifurcating from incoherence, a+, coexisting with a
fully in-phase synchronized state. In Figs. 2(a1) and 2(a2)
we, respectively, show the time series and the phase portraits
corresponding to the numerical integration of Eqs. (9) for√

η̄ = 3.6. These simulations confirm the presence of a small
amplitude symmetric limit cycle, which grows in size as
parameters are moved away from the instability.
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TABLE I. Classification of the different dynamical states observed for populations of both identical, and heterogeneous QIF neurons.
The names of the states are the following: ASYNC: Asynchronous or incoherent state. FULL SYNC: fully synchronized state. QPS:
Quasiperiodic partial synchronization. M -QPS: modulated quasiperiodic partial synchronization. PS-I and PS-II stands for type I and type II
partially synchronous states. M-PS: modulated partially synchronous state. The prefix 2F- and 3F- indicate the number of frequencies of the
corresponding quasiperiodic dynamics. For each state we specify the dynamics at the macroscopic level (mean field) and at the microscopic
level (single neuron). For the states of collective chaos, λ is the Lyapunov exponent of a single neuron forced by the mean field.

ASYNC FULL SYNC QPS M-QPS COLLECTIVE CHAOS
Single neuron: Periodic Periodic 2F-Quasip. 3F-Quasip. Chaotic-like (λ = 0)

IDENTICAL Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

ASYNC PS-I PS-II M-PS COLLECTIVE CHAOS
Single neuron: Periodic Periodic, Periodic, 2F-Quasip.,

HETEROGENEOUS 2F-Quasip. 2F-Quasip. 3F-Quasip. Chaotic-like (λ < 0)
Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

As analyzed in Ref. [28], in Fig. 2(a1) the oscillation
period of the mean field is exactly T = 2 (or, in dimen-
sional form, T = 2D). The periodic dynamics of the global
quantities leads to quasiperiodic dynamics of the individual
neurons, i.e., Quasiperiodic partial synchrony (QPS). This
may be appreciated plotting the ISIs of a single neuron versus
their consecutive ISIs. The resulting return plot, shown in
Fig. 2(a4), forms a closed curve indicating quasiperiodic
dynamics. Interestingly, the ISIs of the neurons are always
shorter than the period of the firing rate oscillations, as shown

by the ISI histogram in Fig. 2(a5). The bimodal structure
of the distribution is related to double-loop shape of the
macroscopic periodic attractor.

The limit cycle that emerges via the Hopf-like instability
displays a robust v → −v symmetry that only breaks down
after another bifurcation. In Ref. [28], for

√
η̄ = 3, it was

shown that symmetry broke down after a period-doubling
bifurcation. Here, taking a slightly larger value of

√
η̄ and in-

creasing inhibition, we observe an imperfect symmetry break-
ing transition, with two coexisting attractors; see Figs. 2(b1),
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FIG. 2. Macroscopic (columns 1 and 2) and microscopic (columns 3–5) dynamics of QPS (rows a and b), M-QPS (row c) and collective
chaos (row d), see Table I. Column 1: time series of the mean firing rate. Blue lines correspond to numerical simulations of the FRE Eqs. (9),
while red dotted lines are obtained computing the mean firing rate of a population of N = 2000 QIF neurons. Column 2: (r, v) phase portraits,
numerically obtained using Eqs. (9). In panel (b2) two coexisting periodic attractors are shown: QPS-asym(I) (solid) and QPS-asym(II)
(dashed)—see also inset of Fig. 3. Panels (b1, b3–b5) correspond to QPS-asym(I). Columns (3–5) show the dynamics of a population of
N = 2000 QIF neurons. Column 3: raster plots. Neurons are ordered according to their firing time at the beginning of the simulation (due to
the first order nature of the QIF model, this ordering is preserved in time). Columns 4 and 5 show return ISI plots and ISI distributions of
an arbitrary neuron j . The return plots of panels (a4, b4) are closed curves, indicating quasiperiodic microscopic dynamics in the QPS-sym
and QPS-asym. The corresponding ISI histograms (a5, b5) show two (QPS-sym) or three (QPS-asym) peaks. In the M-QPS, neurons are
quasiperiodic with three characteristic frequencies—the return plots of panel (c4) is a closed surface in 3D, and therefore its projection in 2D
fills a defined region of the space. Parameters: (row a) J = −9.2 (row b) J = −9.5, (row c) J = −10.3, (row d) J = −10.6. We use

√
η̄ = 3.6

in all simulations.
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FIG. 3. Four largest Lyapunov exponents for two alternative
bifurcation sequences in a range of negative J values and fixed√

η̄ = 3.6. For each solution, the continuation was carried out either
increasing or decreasing parameter J adiabatically. In the top panel
the vertical dashed lines indicate, from right to left: a supercritical
Hopf bifurcation (SC-H), a transcritical bifurcation (TC), a Neimark-
Sacker bifurcation (NS), and a subcritical Hopf bifurcation (SB-H).
In the bottom panel the vertical dashed lines indicate, from right to
left: a saddle-node bifurcation (SN), a Neimark-Sacker bifurcation
(NS), and the onset of chaos (C). The inset shows a sketch of the
bifurcation diagram connecting the two bifurcation sequences.

2(b2), and 3. These asymmetric periodic orbits—which we
call QPS-asym(I) and QPS-asym(II)—are not related by sym-
metry. In fact, each attractor is born via a different bifurcation,
see details below. In these asymmetric states the period differs
from 2D, but still neurons are quasiperiodic, see Figs. 2(b4)
and 2(b5).

Increasing inhibition further, the macroscopic dynamics
becomes more irregular, with no evident periodicity; see
Figs. 2(c1) and 2(c2). Below, we show the analysis of the
Lyapunov exponents indicating quasiperiodic mean field dy-
namics with two incommensurable frequencies. As a con-
sequence of this quasiperiodic forcing, the neurons exhibit
three-frequency quasiperiodic motion; see Fig. 2(c4). We
call this new state modulated QPS, or simply M-QPS, due
to the additional modulating frequency. To the best of our
knowledge this state has been only reported in a very different
setup [29,71]. Lowering J further, the M-QPS eventually
turns into a chaotic state; see Figs. 2(d1) and 2(d2).

To determine the bifurcations linking different partially
synchronous states (QPS, M-QPS, or collective chaos), we
computed the four largest Lyapunov exponents of the FRE on
the line along the J direction with η̄ value of Fig. 2. Employ-
ing the usual method [72], parameter J was quasiadiabatically
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FIG. 4. Poincaré sections of the FRE (9) for
√

η̄ = 3.6, and for
three different values of the inhibitory coupling strength: (a) J =
−10.3; (b) J = −10.48; (c) J = −10.6. The Poincaré surface is v =
0, v̇ < 0.

decreased and increased, to detect eventual bistabilities. Two
parallel sequences of bifurcations were eventually detected,
as shown in the top and bottom panels of Fig. 3. In the
top panel, moving leftwards, the fixed point attractor (a+)
first undergoes a supercritical Hopf-like bifurcation, after
which the stable attractor of the system is a symmetric QPS
attractor. The symmetry breaking takes place at a transcritical
bifurcation (TC), after which the limit cycle is asymmetric
[QPS-asym(II)]. At a lower J value, the asymmetric periodic
orbit undergoes Neimark-Sacker bifurcation giving rise to M-
QPS—given that we find two vanishing Lyapunov exponents.
Further decreasing inhibition, the M-QPS disappears in a
subcritical Hopf bifurcation (SB-H).

In the other sequence of bifurcations—bottom panel of
Fig. 3—another asymmetric orbit [QPS-asym(I)] is born at
a saddle-node (SN) bifurcation. As QPS-asym(II), it also
undergoes a Neimark-Sacker bifurcation as J is decreased
giving rise to M-QPS. In Figs. 2 and 4 we show the M-QPS
state corresponding to this particular sequence of bifurcations.
However, note that M-QPS states resulting from either route
in Fig. 3 have the same dynamical features (two vanishing
largest Lyapunov exponents and three-frequency microscopic
motion). Lockings occur at certain windows of J , where the
second largest Lyapunov exponent is not zero. To further
prove the macroscopic quasiperiodic nature of the M-QPS, we
also show Poincaré sections for three different values of J in
Fig. 4. As J is lowered the torus corrugates as typically ob-
served in the transition to chaos via fractalization of the torus
[73]; see Fig. 4(b). The torus breaks down around J = −10.5,
and the attractor turns fractal. Notably, the chaotic attractor
achieves rapidly an information dimension larger than three
according to the Kaplan-Yorke formula [74] since λ1 > |λ3|,
see bottom panel of Fig. 3; in contrast with the dimension
slightly above two found in Ref. [28] for the chaotic attractor
born from the period doubling cascade. It is important to
stress that, in spite of the positive Lyapunov exponent (of
the collective dynamics), the microscopic dynamics remains
nonchaotic, because the individual oscillators have only one
degree of freedom. In fact the structure of the model imposes
the neurons to fire sequentially; see Fig. 2(d3). Finally, the
inset in Fig. 3 is our conjecture of how the two bifurcation
sequences in the main panels are connected: the unstable
branch the SN bifurcation collides with the symmetric QPS
state at the TC bifurcation.

In the preceding figures we have shown the transitions
along a specific η̄ value. Seeking a more global picture we
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FIG. 5. Numerical exploration of the partially synchronized
states (QPS,M-QPS, collective chaos) near the supercritical Hopf
bifurcation in phase diagram Fig. 1. In the light gray region the
largest Lyapunov exponent is zero, and QPS is stable. The purple
dots correspond to two vanishing Lyapunov exponents, indicating
quasiperiodic dynamics. In the cyan region the dynamics is chaotic.
The vertical dashed black line at

√
η̄ = 3.6 corresponds to the range

of parameters explored in Fig. 3.

decided to sweep parameters J and η̄ monitoring the largest
Lyapunov exponents. This permits to identify the attractor
types efficiently. Figure 5 shows the region spanned by par-
tially synchronized dynamics [75]. The light gray and purple
regions indicate QPS and M-QPS states, respectively, while
cyan dots correspond to chaotic dynamics. It surprised us
the extension of the parameter region where QPS coexists
with full synchrony (light shaded unhatched area). There
is a “tongue” extending to very negative J values around√

η̄ = 4.7 that looks like an “echo” at 3π/2 = 4.712 . . . of
the infinite tongue just below

√
η̄ = π . We have not an intu-

itive explanation for this. Quasiperiodic dynamics (M-QPS)
is found always not far from the degenerate point were the
instability boundaries for n = 1 and n = 2, see Eq. (10), meet.
This is probably not casual (further analysis is nonetheless
beyond our scope [76]). Regarding the chaotic state, it shows
up in two distinct regions: the leftmost one is related to
the period-doubling scenario observed in Ref. [28], while
the rightmost one is correspond to the quasiperiodic route
uncovered here.

V. POPULATIONS OF HETEROGENEOUS NEURONS

In this section we consider that the neurons in the net-
work are nonidentical, and we investigate how this alters
the phase diagram in Fig. 1 and the partially synchronous
states depicted in Fig. 2. Hence, in the following we assume
that the half-width � of the Lorentzian distribution Eq. (6)
is not zero. Under the presence of Lorentzian heterogeneity
fully and partially synchronous states discussed previously
are unattainable. In the following the generic term “partial
synchronization” refers to any state of the network which is
not an incoherent state.

States reminiscent of QPS and collective chaos persist for
finite values of �, with individual neurons displaying different
motions depending on their native Tj values. We denote these
states as partial synchronization-I (PS-I) and PS-II for the
states reminiscent of full synchrony and QPS, respectively. In
PS-I most neurons are 1:1 entrained to the global frequency,
and the remaining neurons are either entrained with a different
ratio or display quasiperiodic dynamics. In the case of PS-II
only a minority of the neurons entrains 1:1 with the macro-
scopic oscillation. We use the distinction between PS-I and
PS-II for convenience, but we emphasize that there is not a
clearcut distinction between both states and one can transit
from one to the other continuously. As for the other states,
the asynchronous state continues to exist after introducing
the heterogeneity, although not in the form of a splay state.
Finally, M-QPS is replaced by a modulated PS states, or
M-PS, while collective chaos continues to exist; see Table I.

Next we analyze how the stability regions of incoher-
ence, which can still be analytically computed from the FRE
Eqs. (9), change due to the presence of heterogeneity. Unfor-
tunately, in the heterogeneous case, a stability analysis similar
to that of Sec. IV A for the case of synchronous states is not
possible. Later in this section we examine how the partially
synchronized states found in the region η̄ > 0 for identical
inhibitory neurons are altered by quenched disorder.

A. Stability boundaries of incoherence and
phase diagram for � = 0.1

It is important to note that the presence of heterogeneity
removes all degeneracies of the FRE Eqs. (9). The fixed
points can be still obtained in parametric form, as well as
the boundaries corresponding to saddle-node bifurcations of
the asynchronous/incoherent states (green lines in Fig. 6).
However, these expressions are lengthy and here we omit
them for the sake of clarity; see Ref. [26]. Linearizing and
imposing the condition for marginal stability, also the loci
of the Hopf bifurcations can be obtained in parametric form
(black lines in Fig. 6). We finally used numerical simulations
of Eqs. (9) to detect the regions where partially synchronous
states become unstable, or cease to exist (dark gray region in
Fig. 6).

The phase diagram in Figure 6 summarizes these results
for � = 0.1, and displays the regions where distinct dynamics
occur—compare with the phase diagram Fig. 1. As expected,
close to the J = 0 axis incoherence is the only attractor of the
system (dark shaded). Like in the case of identical neurons,
bistability regions between incoherence and another state(s)
exist (light shaded). Interestingly, for inhibitory coupling, the
Hopf bifurcations of the asynchronous state largely overlap
with the numerical boundaries of “pure” incoherence (dark
shading). This indicates that, for inhibitory networks, the
intervals where the Hopf bifurcations are supercritical are
dramatically enlarged as heterogeneity is increased.

1. Phase diagram in the region η̄ < 0

Figure 7 displays an enlarged view of the phase diagram
Fig. 6, around the brown region located at η̄ < 0. The scenario
of bifurcations is quite intricate in this region, and here we
describe it in detail. The brown shaded region is interesting
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FIG. 6. Phase diagram for populations of heterogeneous neurons,
� = 0.1. Dark shaded region: Incoherence (fixed point) is the only
stable state. Light shaded region: Incoherence (fixed point) coexist
with a partially synchronous state (limit cycle). Brown region: Two
forms of asynchrony (high and a low activity fixed points) coexist
with a partially synchronous state. Green lines are saddle-node bi-
furcations, and black lines correspond to Hopf boundaries. Note that
here, in contrast with Fig. 1, the Hopf boundaries are not represented
in Blue/Red (we do not explicitly specify whether these boundaries
are subcritical or supercritical). The boundary between light and dark
shaded regions was obtained numerically.

since a high-rate and a low-rate fixed points—reminiscent of
the fixed points a+ and q−—coexist with a periodic orbit.
In Fig. 7 we have included two dashed lines corresponding
to bifurcations involving saddles and/or repellors to fully
clarify the transitions between different stable states. We also
highlight two codimension-two points: the cusp point where
the two saddle-node bifurcations meet, and the zero-Hopf

(ZH) point—associated to a zero and a pair of pure imaginary
eigenvalues. The different shadings in the figure indicate re-
gions with qualitatively different attractors: in the dark region
(I) only one fixed point is stable. In the small dark purple
region (II) this fixed point coexists with another stable fixed
point. In the light shaded areas (IV,V,VI) a stable fixed point
coexists with a stable limit cycle. This limit cycle is the only
stable attractor in the white region (VII). Finally, in the brown
region (III), there are three coexisting stable attractors: two
fixed points, and a limit cycle.

The transitions between any two regions in the diagram
can be understood considering a three-dimensional space.
In the right panels of Fig. 7 we present sketches of the
phase portraits of the different stability regions, by means
of Poincaré sections. Thick lines represent two-dimensional
manifolds. Comparing the phase diagram in Fig. 7 with the
results previously obtained for instantaneous interactions [26],
we see that the delay promotes the appearance of a Hopf
bifurcation of the asynchronous state. Note that the scenario
shown in Fig. 7 resembles that of a population of heteroge-
neous QIF neurons with fast synaptic kinetics [54], but here
we find a codimension-two ZH point, instead of a double-zero
eigenvalue point.

B. Numerical analysis of partially synchronized states
in the presence of heterogeneity

Here we explore numerically how the presence of hetero-
geneity transforms the partially synchronized states described
in Sec. IV. To circumvent sample-to-sample fluctuations, ηj

values are selected deterministically from the Lorentzian dis-
tribution setting ηj = η̄ + � tan [π (2j − N − 1)/(2N + 2)],
where j = 1, 2, . . . , N . States reminiscent of previous par-
tially synchronous states persist for � �= 0; in columns (1 and
2) of Fig. 8 we show the macroscopic time series of PS-II, M-
PS and collective chaos, where blue lines represent numerical
integration of the FRE Eqs. (9) and red lines simulation of

FIG. 7. Enlarged view of the region of multistability located at η̄ < 0 in Fig. 6. Black line: Hopf bifurcation (subcritical). Green lines:
saddle-node bifurcations. In the dark shaded region, only the quiescent, low activity state is stable. In the light shaded region, incoherence
coexists with a collective oscillatory state—self-sustained due to recurrent excitation. In the brown region the low activity fixed point coexists
with a high activity fixed point and with the oscillatory state. In the small dark purple region only the two high and low activity fixed points are
attracting. Right panels: Sketches of the Poincaré section in different regions (assuming that it coincides with the one-dimensional manifold that
connects different fixed points). The thick lines indicate two-dimensional manifolds, and periodic orbits are indicated by a point surrounded
by a small circle.
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FIG. 8. Macroscopic (columns 1 and 2) and microscopic (columns 3–5) dynamics of (row a) PS-II states, (row b) M-PS states, and (row
c) collective chaos for heterogeneous neurons—see Fig. 2 and Table I. Column 1: Time series of the firing rate for the FRE Eqs. (9) (blue)
and for a population of N = 2000 QIF neurons Eqs. (1) (red dotted). Column 2 shows the corresponding attractors, obtained using the FRE.
In rows (a) and (b), the dynamics is periodic but, in contrast with the identical case, here the limit cycle is asymmetric due to the presence
heterogeneity. Column 3 shows the raster plots corresponding to numerical simulations of a population of N = 2000 QIF neurons Eqs. (1),
and columns 4 and 5 show the corresponding return plots and ISI histograms, respectively. In the raster plots, each neuron index j corresponds
to a specific ηj value (see text). For the computation of return plots and ISI histograms we used neuron j = 500. In panels (a4) and (b4) one
can see that the neuron behaves quasiperiodically, with two and three incommensurable frequencies, respectively. Note also the three peaks in
panel (a5) due to the asymmetry of the limit cycle. In all panels we use � = 0.1,

√
η̄ = 3.5, and (row a) J = −9.60; (row b) J = −10.70;

(row c) J = −11.30.

a population of QIF neurons. All the three states are clearly
reminiscent of the QPS, M-QPS and collective chaos states for
identical neurons. In the columns (3–5) of Fig. 8 we also show
the raster plots of the spiking activity of the population of
QIF neurons together with the return plots and ISI histograms
of a single neuron of the population. Due to the presence
of heterogeneity, in the PS-II state neurons can be either
periodic or two-frequency quasiperiodic, while in the M-PS
they can be two- or three-frequency quasiperiodic, see Table I.
The illustrative neuron chosen to plot the return maps and
ISI histograms of Fig. 8 are, respectively, two-frequency and
three-frequency quasiperiodic for Figs. 8(a4), 8(a5) and 8(b4),
8(b5). Note how, as in the QPS-asym in Fig. 2(f), the his-
togram of ISIs for a quasiperiodic neuron in the PS-II state has
three peaks, due to the asymmetric shape of the limit cycle.

To further characterize the microscopic dynamics of PS-
II, M-PS and collective chaos, in Fig. 9 we calculate the
time-averaged coupling-modified ISIs of the neurons, and plot
them against each neuron natural ISI Tj . In the PS-II state
shown in Fig. 9(a), the lower and upper plateaus correspond,
respectively, to the average period between two consecutive
peaks of the mean field, and to the period of the mean field
oscillation in Fig. 8. Here it is convenient to recall Table I,
where the relations between macroscopic and microscopic
dynamics are indicated.

Finally, we investigate the bifurcations that connect these
partially synchronous states, again relying on the computation
of the Lyapunov spectrum of Eqs. (9). As we did in Section IV
for identical neurons, we evaluate the four largest Lyapunov
exponents along the J direction in the phase diagrams, near
the Hopf bifurcation. Figure 10 reveals a scenario qualita-
tively similar to the identical case (except that, at least for
the specific η̄ value adopted, no bistability was detected).

Starting from a fixed point, the Hopf bifurcation produces a
periodic solution (PS-II) with a vanishing largest LE, which
then undergoes a Neimark-Sacker bifurcation leading to a
quasiperiodic solution (M-PS). Eventually, this quasiperiodic
solution breaks down giving rise to a chaotic state. Finally,
increasing inhibition above a critical level makes the Lya-
punov exponents to change abruptly, and chaos is suddenly
replaced by a periodic orbit (PS-I). This is in consistency with
an exterior crisis undergone by the chaotic attractor.

C. Boundaries of incoherence for large heterogeneity

At this point, we discussed a fixed value of the heterogene-
ity � = 0.1. We now study the effect of increasing values
of � on the stability boundaries of incoherence. As previ-

FIG. 9. Time-averaged coupling-modified ISIs as a function of
the intrinsic ISI for a population of 2000 QIF neurons in three
different states: (a) PS-II, (b) M-PS, and (c) collective chaos. The red
dots are obtained with direct simulations of the population of QIF
neurons, while the blue line is obtained forcing each neuron with
the FRE. Note the multiple plateaus in the middle panel. Parameters
are as in Fig. 8:

√
η̄ = 3.5 and (a) J = −9.60; (b) J = −10.70;

(c) J = −11.30.
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FIG. 10. The four largest Lyapunov exponents for � = 0.1 and√
η̄ = 3.5. The stability regions of the different attractors are indi-

cated by vertical gray dashed lines.

ously discussed, the Hopf bifurcations become increasingly
supercritical as the level of heterogeneity grows, and this
is particularly pronounced for inhibitory coupling. Hence,
the Hopf boundaries are a good proxy to bound the regions
with oscillations of either type (PS-I, PS-II, M-PS, collective
chaos).

Figure 11 shows the Hopf boundaries increasing values of
�. Note that the region of oscillations for inhibitory coupling
progressively shrinks, and eventually disappears from the
diagram. Accordingly, given a value of η̄, there is a value of �

for which, no matter how strong inhibition is, the neurons will
not synchronize. The fragility of the oscillations against het-
erogeneity is consistent with previous computational studies
of networks of inhibitory, conductance-based spiking neurons
[77–79]. However, note that synchronization can always be

FIG. 11. Increasing the level of heterogeneity � reveals different
synchronization scenarios for excitation and inhibition (see text).
Black, dark blue, blue and light blue lines correspond, respec-
tively, to the Hopf boundaries of Eqs. (9) with � = 0.1, 5, 10, 20.
These boundaries determine the regions of stability of the inco-
herent/asynchronous states. In the shaded regions incoherence is
stable for � = 0.1. In the dark shaded region the only attractor is
incoherence.

achieved for strong enough excitatory coupling. This high-
lights a fundamental asymmetry between the excitatory and
the inhibitory oscillatory regions in networks of QIF neurons.
We emphasize that this asymmetric behavior is not found in
the heterogeneous Kuramoto model with delay [64–66]. A
possible explanation for such asymmetry is that, at variance
with other self-sustained oscillators, QIF neurons cease to
oscillate for strong enough inhibition. On the contrary, excita-
tion just speeds up QIF neurons, which remain oscillatory.

VI. CONCLUSIONS AND DISCUSSION

We analyzed the dynamics of a large population of QIF
neurons with synaptic delays. To a large extent the anal-
ysis was carried out using the FRE Eqs. (9), which is
mathematically tractable and allows for an efficient compu-
tational analysis. For identical neurons, we have extended
the analytical results in Ref. [28] to the excitable regime
(η̄ < 0). Our analytical predictions pointed out parameter
regimes where nontrivial dynamics should necessarily occur.
In these regions of parameters we performed an extensive
numerical exploration supported by the computation of the
Lyapunov spectrum, which revealed the existence of partially
synchronous states. One of these states, which we called
M-QPS, appears after a Neimark-Sacker bifurcation of QPS
that superimposes a second (modulating) frequency. Partially
synchronous states—especially QPS—coexist with full syn-
chronization in a large region of the parameter space. The
existence in the phase diagram Fig. 5 of what looks like a
second tongue for QPS is an intriguing finding of this work.
Can its origin be understood, at least heuristically? We finally
showed that the partially synchronized states observed in the
absence of disorder also have their counterpart in the presence
of heterogeneity. However, disorder induces diversity in the
microscopic behaviors of the single neurons.

To conclude, we demonstrate that most of the dynamics
of the FRE Eqs. (9) investigated here cannot be reproduced
using traditional firing rate models [2–5]. To show this we
note that the fixed points of Eqs. (9) have precisely the
structure of traditional firing rate models, while the dynamics
is generically different [55]. Solving the fixed point equation
corresponding to Eq. (9a) for v, and substituting it into the
fixed point equation corresponding to Eq. (9b), one obtains an
equation for the steady firing rate,

r∗ = �(J r∗ + η̄). (16)

The function

�(x) = 1√
2π

√
x +

√
x2 + �2

is the so-called “transfer function” of a population of QIF
neurons with Lorentzian distribution of currents [49,55]—
steady-state equations for arbitrary distributions of currents
can be obtained self-consistently; see Eq. (C1) in Ref. [26].
Clearly, the traditional first-order firing rate model with time
delays,

ṙ = −r + �(J rD=1 + η̄), (17)

largely investigated in the literature, has exactly the same
fixed points as Eqs. (9) but different dynamics—see, e.g.,
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FIG. 12. Oscillations emerge only for inhibitory coupling in the
traditional firing rate model Eq. (17). In the gray region, limited by
the black line (� = 0.1), the fixed point determined by Eq. (16) is
stable and looses stability via a Hopf bifurcation—compare with
Fig. 11. The dark blue and blue curves correspond to � = 5 and 10,
respectively. The green dashed boundary corresponds to the case
� = 0 and is a straight line.

Refs. [7–13] for studies of Eqs. (17) using different transfer
functions. Indeed, the linear stabililty analysis of the fixed
points of Eq. (17) gives the characteristic equation

λ = −1 + �′Je−λ,

where λ is an eigenvalue, and �′ is the derivative of the
transfer function evaluated at the fixed point r∗, determined
by Eq. (16). The nonstationary instabilities (obtained using
the condition of marginal stability λ = i�) are depicted in
Fig. 12 for different values of the heterogeneity �, and clearly
differ from the Hopf boundaries of the FRE Eqs. (9) shown in
Fig 11. Specifically, the traditional firing rate model Eq. (17)

only displays oscillations for inhibitory coupling and η̄ > 0,
while the FRE Eqs. (9) show oscillations for both excita-
tion and inhibition, even for η̄ < 0—see Figs. 1, 6, and 11.
Moreover, the tent-shaped structure of the Hopf boundaries of
Eqs. (17) is lost in the traditional firing rate model Eq. (17).

Nonetheless, note that as the heterogeneity � is increased,
the behavior of the Hopf boundaries of Eq. (17) qualitatively
agrees with that of the FRE Eqs. (9): The region of oscillations
in both models shifts to large η̄ values, in consonance with
the well known result that quenched heterogeneity cannot
be counterbalanced by inhibitory coupling to produce syn-
chronization [55,77–79]. Moreover, we have shown that for
large heterogeneity the Hopf boundaries of Eqs. (9) become
supercritical, and this coincides with what is generically found
in traditional firing rate models with small delays [10]. In fact,
though Eq. (17) is heuristic, it has proven to be remarkably
effective at describing the oscillatory dynamics of networks
of spiking neurons with strong noise [7–14], and is a paradig-
matic mean-field model to investigate the effect of various
types of delays in neuronal networks; see, e.g., Refs. [15–25].

Finally, we want to note the resemblance of the par-
tially synchronized states investigated here with the so-called
sparsely synchronized states [9], in which strong inhibition
and noise produce irregular spiking but a coherent macro-
scopic oscillation. Remarkably, in both states the period of
the macroscopic oscillation is determined by the time delay
but differs from the ISIs of the single cells. However, micro-
scopically, the neurons have a qualitatively different behav-
ior: In the QPS, their dynamics is purely deterministic and
quasiperiodic, while in the sparse synchrony it is stochastic
and irregular.

ACKNOWLEDGMENTS

We acknowledge support by the Spanish Ministry of
Economy and Competitiveness under Projects No. FIS2016-
74957-P, No. PSI2016-75688-P, and No. PCIN-2015-127. We
also acknowledge support by the European Union’s Horizon
2020 Research and Innovation programme under the Marie
Skłodowska-Curie Grant No. 642563.

[1] A. L. Hodgkin and A. F. Huxley, J. Phys. 117, 500 (1952).
[2] H. R. Wilson and J. D. Cowan, Biophys. J. 12, 1 (1972).
[3] P. Dayan and L. F. Abbott, Theoretical Neuroscience (MIT

Press, Cambridge, MA, 2001).
[4] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single

Neurons, Populations, Plasticity (Cambridge University Press,
Cambridge, 2002).

[5] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, Berlin, 2010), Vol. 64.

[6] P. Ashwin, S. Coombes, and R. Nicks, J. Math. Neurosci. 6, 2
(2016).

[7] A. Roxin, N. Brunel, and D. Hansel, Phys. Rev. Lett. 94, 238103
(2005).

[8] D. Battaglia, N. Brunel, and D. Hansel, Phys. Rev. Lett. 99,
238106 (2007).

[9] N. Brunel and V. Hakim, Chaos: Interdisc. J. Nonlin. Sci. 18,
015113 (2008).

[10] A. Roxin and E. Montbrió, Physica D 240, 323 (2011).
[11] E. Ledoux and N. Brunel, Front. Comput. Neurosci. 5, 25

(2011).
[12] S. Keeley, A. A. Fenton, and J. Rinzel, J. Neurophysiol. 117,

950 (2017).
[13] C. Kim, U. Egert, and A. Kumar, bioRxiv (2018), doi:

10.1101/360479.
[14] J. Senk et al., arXiv:1801.06046 (2018).
[15] A. Hutt and F. M. Atay, Phys. Rev. E 73, 021906 (2006).
[16] P. C. Bressloff and Z. P. Kilpatrick, Phys. Rev. E 78, 041916

(2008).
[17] N. Venkov, S. Coombes, and P. Matthews, Physica D: Nonlin.

Phenom. 232, 1 (2007).

042214-12

https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1103/PhysRevLett.94.238103
https://doi.org/10.1103/PhysRevLett.99.238106
https://doi.org/10.1103/PhysRevLett.99.238106
https://doi.org/10.1103/PhysRevLett.99.238106
https://doi.org/10.1103/PhysRevLett.99.238106
https://doi.org/10.1063/1.2779858
https://doi.org/10.1063/1.2779858
https://doi.org/10.1063/1.2779858
https://doi.org/10.1063/1.2779858
https://doi.org/10.1016/j.physd.2010.09.009
https://doi.org/10.1016/j.physd.2010.09.009
https://doi.org/10.1016/j.physd.2010.09.009
https://doi.org/10.1016/j.physd.2010.09.009
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.1152/jn.00490.2016
https://doi.org/10.1152/jn.00490.2016
https://doi.org/10.1152/jn.00490.2016
https://doi.org/10.1152/jn.00490.2016
https://doi.org/10.1101/360479
https://doi.org/10.1101/360479
https://doi.org/10.1101/360479
http://arxiv.org/abs/arXiv:1801.06046
https://doi.org/10.1103/PhysRevE.73.021906
https://doi.org/10.1103/PhysRevE.73.021906
https://doi.org/10.1103/PhysRevE.73.021906
https://doi.org/10.1103/PhysRevE.73.021906
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1103/PhysRevE.78.041916
https://doi.org/10.1016/j.physd.2007.04.011
https://doi.org/10.1016/j.physd.2007.04.011
https://doi.org/10.1016/j.physd.2007.04.011
https://doi.org/10.1016/j.physd.2007.04.011


DYNAMICS OF A LARGE SYSTEM OF SPIKING NEURONS … PHYSICAL REVIEW E 98, 042214 (2018)

[18] S. Coombes and C. Laing, Philos. Trans. Roy. Soc. London A:
Math., Phys. Eng. Sci. 367, 1117 (2009).

[19] G. Faye and O. Faugeras, Physica D: Nonlin. Phenom. 239, 561
(2010).

[20] J. Touboul, Physica D: Nonlin. Phenom. 241, 1223 (2012).
[21] M. T. Wilson, P. A. Robinson, B. O’Neill, and D. A. Steyn-Ross,

PLoS Comput. Biol. 8(6), e1002560 (2012).
[22] R. Veltz, SIAM J. Appl. Dynam. Syst. 12, 1566 (2013).
[23] R. Veltz and O. Faugeras, SIAM J. Math. Anal. 45, 1527 (2013).
[24] G. Faye and J. Touboul, SIAM J. Appl. Math. 74, 1657 (2014).
[25] K. Dijkstra et al., Physica D: Nonlin. Phenom. 297, 88 (2015).
[26] E. Montbrió, D. Pazó, and A. Roxin, Phys. Rev. X 5, 021028

(2015).
[27] To be consistent with previous work investigating the collective

dynamics of identical oscillators—see Ref. [80] and references
therein—we adopt the term “partial synchronization” to refer
to states which are neither fully synchronous nor asynchronous
(excluding cluster states). We note that the same term is used
to designate synchronous states in the Kuramoto model with
heterogeneity. Here we use the same terminology for both types
of states (see Sec. V).

[28] D. Pazó and E. Montbrió, Phys. Rev. Lett. 116, 238101 (2016).
[29] N. Nakagawa and Y. Kuramoto, Physica D 80, 307 (1995).
[30] C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996).
[31] A. Vilfan and T. Duke, Phys. Rev. Lett. 91, 114101 (2003).
[32] P. K. Mohanty and A. Politi, J. Phys. A: Math. Gen. 39, L415

(2006).
[33] S. Olmi, A. Politi, and A. Torcini, Europhys. Lett. 92, 60007

(2010).
[34] S. Luccioli, S. Olmi, A. Politi, and A. Torcini, Phys. Rev. Lett.

109, 138103 (2012).
[35] M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 98, 064101

(2007).
[36] R. Burioni, S. di Santo, M. di Volo, and A. Vezzani, Phys. Rev.

E 90, 042918 (2014).
[37] A. A. Temirbayev, Z. Z. Zhanabaev, S. B. Tarasov, V. I.

Ponomarenko, and M. Rosenblum, Phys. Rev. E 85, 015204(R)
(2012).

[38] A. A. Temirbayev, Y. D. Nalibayev, Z. Z. Zhanabaev, V. I.
Ponomarenko, and M. Rosenblum, Phys. Rev. E 87, 062917
(2013).

[39] A. Politi and M. Rosenblum, Phys. Rev. E 91, 042916 (2015).
[40] P. Clusella, A. Politi, and M. Rosenblum, New J. Phys. 18,

093037 (2016).
[41] M. Rosenblum and A. Pikovsky, Phys. Rev. E 92, 012919

(2015).
[42] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT

Press, Cambridge, Massachusetts, 2007).
[43] For the numerical simulations of the population of QIF neurons

we use the Euler method with time step δt = 10−5. For the
integration of the FRE Eqs. (9) we use a third-order Adams-
Bashforth-Moulton predictor-corrector scheme with a timestep
δt = 10−4 [81]. In all simulations shown, initial transients were
discarded.

[44] B. Pietras and A. Daffertshofer, Chaos 26, 103101 (2016).
[45] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[46] D. Pazó and E. Montbrió, Phys. Rev. X 4, 011009 (2014).
[47] T. B. Luke, E. Barreto, and P. So, Neural Comput. 25, 3207

(2013).

[48] P. So, T. B. Luke, and E. Barreto, Physica D 267, 16 (2014).
[49] C. R. Laing, Phys. Rev. E 90, 010901 (2014).
[50] C. R. Laing, SIAM J. App. Dynam. Syst. 14, 1899 (2015).
[51] S. Coombes and Á. Byrne, in Nonlinear Dynamics in Com-

putational Neuroscience, edited by F. Corinto and A. Torcini
(Springer International Publishing, Cham, 2019), pp. 1–16.

[52] J. Roulet and G. B. Mindlin, Chaos: Interdisc. J. Nonlin. Sci.
26, 093104 (2016).

[53] B. Ermentrout and N. Kopell, SIAM J. Appl. Math. 46, 233
(1986).

[54] I. Ratas and K. Pyragas, Phys. Rev. E 94, 032215 (2016).
[55] F. Devalle, A. Roxin, and E. Montbrió, PLoS Comput. Biol.

13(12), e1005881 (2017).
[56] I. Ratas and K. Pyragas, Phys. Rev. E 96, 042212 (2017).
[57] G. Dumont, G. B. Ermentrout, and B. Gutkin, Phys. Rev. E 96,

042311 (2017).
[58] H. Schmidt, D. Avitabile, E. Montbrió, and A. Roxin, PLoS

Comput. Biol. 14(9), e1006430 (2018).
[59] J. M. Esnaola-Acebes, A. Roxin, D. Avitabile, and E. Montbrió,

Phys. Rev. E 96, 052407 (2017).
[60] C. R. Laing, J. Math. Neurosci. 8, 4 (2018).
[61] M. di Volo and A. Torcini, Phys. Rev. Lett. 121, 128301 (2018).
[62] M. K. Stephen Yeung and S. H. Strogatz, Phys. Rev. Lett. 82,

648 (1999).
[63] M. Y. Choi, H. J. Kim, D. Kim, and H. Hong, Phys. Rev. E 61,

371 (2000).
[64] M. G. Earl and S. H. Strogatz, Phys. Rev. E 67, 036204 (2003).
[65] E. Montbrió, D. Pazó, and J. Schmidt, Phys. Rev. E 74, 056201

(2006).
[66] W. S. Lee, E. Ott, and T. M. Antonsen, Phys. Rev. Lett. 103,

044101 (2009).
[67] S. Watanabe and S. H. Strogatz, Physica D 74, 197 (1994).
[68] A. Pikovsky and M. Rosenblum, Physica D 240, 872 (2011).
[69] I. V. Tyulkina, D. S. Goldobin, L. S. Klimenko, and A.

Pikovsky, Phys. Rev. Lett. 120, 264101 (2018).
[70] E. Montbrió and D. Pazó, Phys. Rev. Lett. 120, 244101 (2018).
[71] P. Clusella and A. Politi, arXiv:1810.01281.
[72] J. D. Farmer, Physica D 4, 366 (1982).
[73] J. H. Curry and J. A. Yorke, The Structure of Attractors in

Dynamical Systems, No. 668 in Springer Notes in Mathematics
(Springer-Verlag, Berlin, 1978), pp. 48–56.

[74] J. L. Kaplan and J. A. Yorke, in Functional Differential Equa-
tions and Approximation of Fixed Points, Vol. 730 of Lecture
Notes in Mathematics, edited by H. O. Walter and H.-O. Peitgen
(Springer-Verlag, Berlin, 1979), pp. 204–227.

[75] Actually, we have not explored the region close to the supercrit-
ical bifurcation just above

√
η̄ = 2π .

[76] The degenerate point is a codimension-three point because the
instability for n = 1 is degenerate exactly at that point (see the
Supplemental Material of Ref. [28]).

[77] X.-J. Wang and G. Buzsáki, J. Neurosci. 16, 6402 (1996).
[78] J. A. White et al., J. Comput. Neurosci. 5, 5 (1998).
[79] P. Tiesinga and J. V. José, Netw., Comput. Neural Syst. 11, 1

(2000).
[80] A. Pikovsky and M. Rosenblum, Chaos 25, 097616 (2015).
[81] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in FORTRAN (2nd ed.): The Art of
Scientific Computing (Cambridge University Press, New York,
NY, 1992).

042214-13

https://doi.org/10.1098/rsta.2008.0256
https://doi.org/10.1098/rsta.2008.0256
https://doi.org/10.1098/rsta.2008.0256
https://doi.org/10.1098/rsta.2008.0256
https://doi.org/10.1016/j.physd.2010.01.010
https://doi.org/10.1016/j.physd.2010.01.010
https://doi.org/10.1016/j.physd.2010.01.010
https://doi.org/10.1016/j.physd.2010.01.010
https://doi.org/10.1016/j.physd.2012.03.010
https://doi.org/10.1016/j.physd.2012.03.010
https://doi.org/10.1016/j.physd.2012.03.010
https://doi.org/10.1016/j.physd.2012.03.010
https://doi.org/10.1371/journal.pcbi.1002560
https://doi.org/10.1371/journal.pcbi.1002560
https://doi.org/10.1371/journal.pcbi.1002560
https://doi.org/10.1371/journal.pcbi.1002560
https://doi.org/10.1371/journal.pcbi.1002560
https://doi.org/10.1137/120889253
https://doi.org/10.1137/120889253
https://doi.org/10.1137/120889253
https://doi.org/10.1137/120889253
https://doi.org/10.1137/110856162
https://doi.org/10.1137/110856162
https://doi.org/10.1137/110856162
https://doi.org/10.1137/110856162
https://doi.org/10.1137/140955458
https://doi.org/10.1137/140955458
https://doi.org/10.1137/140955458
https://doi.org/10.1137/140955458
https://doi.org/10.1016/j.physd.2015.01.004
https://doi.org/10.1016/j.physd.2015.01.004
https://doi.org/10.1016/j.physd.2015.01.004
https://doi.org/10.1016/j.physd.2015.01.004
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevLett.116.238101
https://doi.org/10.1103/PhysRevLett.116.238101
https://doi.org/10.1103/PhysRevLett.116.238101
https://doi.org/10.1103/PhysRevLett.116.238101
https://doi.org/10.1016/0167-2789(94)00185-S
https://doi.org/10.1016/0167-2789(94)00185-S
https://doi.org/10.1016/0167-2789(94)00185-S
https://doi.org/10.1016/0167-2789(94)00185-S
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevLett.91.114101
https://doi.org/10.1103/PhysRevLett.91.114101
https://doi.org/10.1103/PhysRevLett.91.114101
https://doi.org/10.1103/PhysRevLett.91.114101
https://doi.org/10.1088/0305-4470/39/26/L01
https://doi.org/10.1088/0305-4470/39/26/L01
https://doi.org/10.1088/0305-4470/39/26/L01
https://doi.org/10.1088/0305-4470/39/26/L01
https://doi.org/10.1209/0295-5075/92/60007
https://doi.org/10.1209/0295-5075/92/60007
https://doi.org/10.1209/0295-5075/92/60007
https://doi.org/10.1209/0295-5075/92/60007
https://doi.org/10.1103/PhysRevLett.109.138103
https://doi.org/10.1103/PhysRevLett.109.138103
https://doi.org/10.1103/PhysRevLett.109.138103
https://doi.org/10.1103/PhysRevLett.109.138103
https://doi.org/10.1103/PhysRevLett.98.064101
https://doi.org/10.1103/PhysRevLett.98.064101
https://doi.org/10.1103/PhysRevLett.98.064101
https://doi.org/10.1103/PhysRevLett.98.064101
https://doi.org/10.1103/PhysRevE.90.042918
https://doi.org/10.1103/PhysRevE.90.042918
https://doi.org/10.1103/PhysRevE.90.042918
https://doi.org/10.1103/PhysRevE.90.042918
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.87.062917
https://doi.org/10.1103/PhysRevE.87.062917
https://doi.org/10.1103/PhysRevE.87.062917
https://doi.org/10.1103/PhysRevE.87.062917
https://doi.org/10.1103/PhysRevE.91.042916
https://doi.org/10.1103/PhysRevE.91.042916
https://doi.org/10.1103/PhysRevE.91.042916
https://doi.org/10.1103/PhysRevE.91.042916
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1103/PhysRevE.92.012919
https://doi.org/10.1103/PhysRevE.92.012919
https://doi.org/10.1103/PhysRevE.92.012919
https://doi.org/10.1103/PhysRevE.92.012919
https://doi.org/10.1063/1.4963371
https://doi.org/10.1063/1.4963371
https://doi.org/10.1063/1.4963371
https://doi.org/10.1063/1.4963371
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/PhysRevX.4.011009
https://doi.org/10.1103/PhysRevX.4.011009
https://doi.org/10.1103/PhysRevX.4.011009
https://doi.org/10.1103/PhysRevX.4.011009
https://doi.org/10.1162/NECOa00525
https://doi.org/10.1162/NECOa00525
https://doi.org/10.1162/NECOa00525
https://doi.org/10.1162/NECOa00525
https://doi.org/10.1016/j.physd.2013.04.009
https://doi.org/10.1016/j.physd.2013.04.009
https://doi.org/10.1016/j.physd.2013.04.009
https://doi.org/10.1016/j.physd.2013.04.009
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1137/15M1011287
https://doi.org/10.1137/15M1011287
https://doi.org/10.1137/15M1011287
https://doi.org/10.1137/15M1011287
https://doi.org/10.1063/1.4962326
https://doi.org/10.1063/1.4962326
https://doi.org/10.1063/1.4962326
https://doi.org/10.1063/1.4962326
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1137/0146017
https://doi.org/10.1103/PhysRevE.94.032215
https://doi.org/10.1103/PhysRevE.94.032215
https://doi.org/10.1103/PhysRevE.94.032215
https://doi.org/10.1103/PhysRevE.94.032215
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1103/PhysRevE.96.042212
https://doi.org/10.1103/PhysRevE.96.042212
https://doi.org/10.1103/PhysRevE.96.042212
https://doi.org/10.1103/PhysRevE.96.042212
https://doi.org/10.1103/PhysRevE.96.042311
https://doi.org/10.1103/PhysRevE.96.042311
https://doi.org/10.1103/PhysRevE.96.042311
https://doi.org/10.1103/PhysRevE.96.042311
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1103/PhysRevE.96.052407
https://doi.org/10.1103/PhysRevE.96.052407
https://doi.org/10.1103/PhysRevE.96.052407
https://doi.org/10.1103/PhysRevE.96.052407
https://doi.org/10.1186/s13408-018-0059-7
https://doi.org/10.1186/s13408-018-0059-7
https://doi.org/10.1186/s13408-018-0059-7
https://doi.org/10.1186/s13408-018-0059-7
https://doi.org/10.1103/PhysRevLett.121.128301
https://doi.org/10.1103/PhysRevLett.121.128301
https://doi.org/10.1103/PhysRevLett.121.128301
https://doi.org/10.1103/PhysRevLett.121.128301
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1103/PhysRevLett.82.648
https://doi.org/10.1103/PhysRevE.61.371
https://doi.org/10.1103/PhysRevE.61.371
https://doi.org/10.1103/PhysRevE.61.371
https://doi.org/10.1103/PhysRevE.61.371
https://doi.org/10.1103/PhysRevE.67.036204
https://doi.org/10.1103/PhysRevE.67.036204
https://doi.org/10.1103/PhysRevE.67.036204
https://doi.org/10.1103/PhysRevE.67.036204
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevE.74.056201
https://doi.org/10.1103/PhysRevLett.103.044101
https://doi.org/10.1103/PhysRevLett.103.044101
https://doi.org/10.1103/PhysRevLett.103.044101
https://doi.org/10.1103/PhysRevLett.103.044101
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1016/j.physd.2011.01.002
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.244101
https://doi.org/10.1103/PhysRevLett.120.244101
https://doi.org/10.1103/PhysRevLett.120.244101
https://doi.org/10.1103/PhysRevLett.120.244101
http://arxiv.org/abs/arXiv:1810.01281
https://doi.org/10.1016/0167-2789(82)90042-2
https://doi.org/10.1016/0167-2789(82)90042-2
https://doi.org/10.1016/0167-2789(82)90042-2
https://doi.org/10.1016/0167-2789(82)90042-2
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1023/A:1008841325921
https://doi.org/10.1023/A:1008841325921
https://doi.org/10.1023/A:1008841325921
https://doi.org/10.1023/A:1008841325921
https://doi.org/10.1088/0954-898X111301
https://doi.org/10.1088/0954-898X111301
https://doi.org/10.1088/0954-898X111301
https://doi.org/10.1088/0954-898X111301
https://doi.org/10.1063/1.4922971
https://doi.org/10.1063/1.4922971
https://doi.org/10.1063/1.4922971
https://doi.org/10.1063/1.4922971

