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Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity
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Low-dimensional descriptions of spiking neural network dynamics are an effective tool for bridging different
scales of organization of brain structure and function. Recent advances in deriving mean-field descriptions for
networks of coupled oscillators have sparked the development of a new generation of neural mass models.
Of notable interest are mean-field descriptions of all-to-all coupled quadratic integrate-and-fire (QIF) neurons,
which have already seen numerous extensions and applications. These extensions include different forms of
short-term adaptation considered to play an important role in generating and sustaining dynamic regimes of
interest in the brain. It is an open question, however, whether the incorporation of presynaptic forms of synaptic
plasticity driven by single neuron activity would still permit the derivation of mean-field equations using the same
method. Here we discuss this problem using an established model of short-term synaptic plasticity at the single
neuron level, for which we present two different approaches for the derivation of the mean-field equations. We
compare these models with a recently proposed mean-field approximation that assumes stochastic spike timings.
In general, the latter fails to accurately reproduce the macroscopic activity in networks of deterministic QIF
neurons with distributed parameters. We show that the mean-field models we propose provide a more accurate
description of the network dynamics, although they are mathematically more involved. Using bifurcation
analysis, we find that QIF networks with presynaptic short-term plasticity can express regimes of periodic
bursting activity as well as bistable regimes. Together, we provide novel insight into the macroscopic effects
of short-term synaptic plasticity in spiking neural networks, as well as two different mean-field descriptions for
future investigations of such networks.
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I. LOW-DIMENSIONAL MANIFOLDS OF SPIKING
NEURAL NETWORK ACTIVITY

The brain can generate a variety of highly complex and
chaotic patterns of neural activity [1]. However, given the vast
number of neurons in the brain, these patterns appear to be
less complex than they could be theoretically, indicating a
high level of neuronal redundancy [2,3]. Electrophysiologi-
cal recordings of macroscopic neural activity have revealed
highly stereotyped responses to sensory stimulation as well
as strongly synchronized regimes of neural activity [4–7].
More recently, multiunit recordings have demonstrated that
strong redundancies are present at the level of spiking neu-
rons as well [8,9]. These findings indicate the existence of
low-dimensional manifolds in the state space of the brain
that typically govern its neural dynamics and its response
to extrinsic stimulation. The identification and description of
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such low-dimensional manifolds has been a central topic of
neuroscientific research for many years [10–15]. Different
approaches for the derivation of mathematical descriptions
of the temporal evolution of low-dimensional neural activity
have been proposed [16]. Among those are classic neural
mass models that use direct, phenomenological descriptions
of macroscopic measures of neural dynamics [17–21]. For
these neural mass models, equivalent spiking neural networks
do not exist in general. Other approaches make use of proba-
bilistic descriptions of the evolution of the collective behavior
inside a neural population [22–24], which make it possible
to capture the statistics inside the spiking neural network up
to a certain order. However, some of these approaches are
restricted to asynchronous regimes of neural activity [22,23],
whereas others use approximations of random fluctuations
in the spiking neural network [24]. Hence, neither of these
approaches provide a mathematically exact set of mean-field
equations that can describe the macroscopic dynamics of a
spiking neural network in general.

The Ott-Antonsen ansatz has provided a new tool to derive
mean-field models of spiking neural networks [25]. While
originally devised for networks of all-to-all coupled Kuramoto
oscillators [26], it has since been applied to networks of theta
neurons [27,28], and, most relevant to this study, to networks
of all-to-all coupled quadratic integrate-and-fire (QIF) neu-
rons [29]. For future applications of this method, it is of
interest to know how well the derivation of the mean-field
equations generalizes to other descriptions of neural dynamics
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than the particular QIF networks considered in Ref. [29].
Consequently, different extensions of the QIF model have
been proposed that added biophysical mechanisms or struc-
tural details to the model in order to explain interesting
neurodynamic phenomena, such as the onset of synchronized
neural activity [30–34]. Particularly interesting are extensions
that include dynamic variables which are not driven by the
mean-field activity of the network, but by neuron- or synapse-
specific processes instead. In such cases, it is unclear whether
mean-field equations can still be found. In Ref. [34], the
QIF network was extended by a spike-frequency adaptation
mechanism, where a neuron-specific adaptation current was
elicited by the spiking activity of the same neuron. Thus, the
adaptation variable was not simply driven by the mean-field
activity of the network. To derive the mean-field equations
nonetheless, the authors applied an adiabatic approximation
to the adaptation dynamics. This approximation assumes that
the adaptation variable evolves slowly in comparison to the
membrane potential dynamics and permits one to apply the
mean-field derivation on the fast timescale. Based on this
mean-field model it will be possible to investigate the effects
of neuron-specific currents at meso- and macroscopic scales,
such as for example the effects of calcium-dependent spikes
on thalamic dynamics [35] or the effects of spike-frequency
adaptation on cortical microcircuits [36].

In this work, we address the question of whether ex-
act mean-field equations can be derived for QIF networks
with synapse-specific dynamic variables. Synaptic dynam-
ics are especially interesting for the computational modeling
of macroscopic neurodynamic phenomena. This is because
synaptic currents are thought to trigger the potential changes
visible in macroscopic electrophysiological recordings of
brain activity, and different synapse types come with different
dynamic characteristics that are pivotal for our understanding
of brain dynamics. Classic neural mass models, for example,
typically use different synaptic timescales to model rhythm
generation in the brain [18,20,21]. The QIF mean-field reduc-
tion generalizes to any convolution of the synaptic input with
a synaptic response kernel [29,30] and, hence, allows one to
derive mean-field descriptions of QIF networks with standard
descriptions of synaptic dynamics such as the alpha kernel
convolution [20,21]. However, given appropriate stimulation,
synaptic dynamics also undergo short-term plasticity (STP)
that changes properties of the synaptic response. It has been
shown that synapses can express short-term depression and
facilitation and that timescales and strengths of these two
STP forms differ between synapse and neuron types. More-
over, synaptic STP has been linked to various functions and
dynamic properties of the brain, such as working memory
[37] or operating in a critical regime [38]. A generalization
of the above discussed mean-field approaches to neural net-
works with synaptic STP would thus provide a valuable tool
for modeling brain dynamics and function at the meso- and
macroscopic level.

Here we discuss the descriptions of synaptic STP that are
allowed for in the context of deriving Ott-Antonsen man-
ifolds for heterogeneous QIF networks. Recent work has
demonstrated that mean-field equations can be derived for
QIF networks with synaptic STP if two conditions are sat-
isfied [34]: First, each time a neuron spikes in the network,

FIG. 1. Pre- vs. postsynaptic forms of short-term plasticity.
Nodes represent neurons in an all-to-all coupled network and edges
between the nodes represent bidirectional synaptic couplings. Red
nodes are active, i.e., did just spike, whereas blue nodes have not
spiked for a sufficient period in time. Edges in red show adaptation in
response to the activity of the red nodes, whereas gray edges do not.
The two equations describe the membrane potential evolution of a
QIF neuron for the cases of pre- and postsynaptic plasticity. Note that
the adaptation variable Ai is specific for presynaptic source neurons
for the former case, and specific to postsynaptic target neurons for
the latter.

it triggers synaptic STP at every other neuron, which is the
case in all-to-all coupled networks. Second, a single incom-
ing spike triggers synaptic STP at all synapses of a neuron.
Under those conditions, synaptic STP is no longer neuron
specific and can simply be treated as a macroscopic variable
driven by the mean-field activity of the network. This form of
synaptic STP could be used to model forms of postsynaptic
receptor desensitization, short-term changes in the number of
available postsynaptic receptors, or resource depletion at the
postsynaptic complex. Importantly, it cannot be considered
to represent presynaptic forms of plasticity, such as vesicle
depletion. While the first assumption would still hold for
presynaptic STP in all-to-all coupled QIF networks, the sec-
ond assumption would not. Presynaptic resource depletion
cannot be assumed to affect all network connections, but only
the efferent connections of a specific neuron (see Fig. 1).

A well-established model of presynaptic STP is the
phenomenological model introduced in Ref. [39], which
describes the dynamics of presynaptic facilitation and depres-
sion. We will discuss the derivation of mean-field equations
for QIF networks with presynaptic STP with respect to this
model, though we will discuss the implications of our findings
for general descriptions of presynaptic STP dynamics as well.
In the following section, we define the microscopic model un-
der consideration. This will be followed by sections in which
we discuss different approaches to derive equations for the
low-dimensional network dynamics. While we do not find the
exact mean-field equations for QIF networks with presynaptic
STP, we provide two different approximations that match well
with the QIF network dynamics. We point to the problems that
would have to be solved in future attempts at an exact mean-
field derivation and evaluate the accuracy of our approximate
solutions via numerical simulations and bifurcation analysis.

044310-2



MEAN-FIELD APPROXIMATIONS OF NETWORKS OF … PHYSICAL REVIEW E 104, 044310 (2021)

II. LOW-DIMENSIONAL MANIFOLDS OF QIF
NETWORKS WITH STP

We consider a network of N all-to-all coupled QIF neurons
with presynaptic STP

τV̇i = V 2
i + ηi + I (t ) + Jτ

N

N∑
j=1

X −
j U +

j S j, (1a)

τxẊi = 1 − Xi − αX −
i U +

i Siτx, (1b)

τuU̇i = U0 − Ui + U0(1 − U −
i )Siτu, (1c)

Si =
∑

k\t k
i <t

∫ t

−∞
a(t − t ′)δ(t ′ − t k

i )dt ′, (1d)

where Eq. (1d) represents a convolution of the spiking activity
of neuron i with a synaptic response kernel a, e.g., in the
case of exponential synapses a(t ) = e−t/τs/τs with synaptic
timescale τs. A neuron i emits its kth spike at time t k

i when
it reaches a threshold Vθ on which Vi is reset to Vr = −Vi.
Without loss of generality, we consider the limit τs → 0, such
that Si represents the spiking activity of neuron i. Equation
(1b) and Eq. (1c) resemble the presynaptic STP mechanism
described in Ref. [39]. We note here that ·− denotes a quantity
just before a spike occurs (left limit), and ·+ denotes a quantity
just after the neuron spiked (right limit). This discontinuity
accounts for the biological fact that a presynaptic spike trig-
gers synaptic facilitation before it can affect the postsynaptic
neuron, by moving vesicles closer to the membrane. Synaptic
depression, however, results from the consumption of vesicles
for the synaptic transmission process and is thus affected
slightly later than synaptic facilitation. We assume neural
spiking activity to affect all outgoing synapses of a neuron
equally, hence Xi and Ui can be considered as neuron and
not synapse specific. The adaptation dynamics are controlled
by the depression and facilitation time constants τx and τu,
a depression strength α, and a baseline synaptic efficacy U0.
Equation (1a) describes the evolution of the membrane poten-
tial Vi of neuron i, which depends on a background excitability
parameter ηi, an extrinsic forcing term I (t ), the membrane
time constant τ , and the coupling with the network activity.
The latter is given by a sum over the output Si of each neuron
in the network, weighted by a global coupling strength J , and
the neuron-specific synaptic depression Xi and facilitation Ui.

In the limit Vθ → ∞, the membrane potential Vi of a QIF
neuron can be directly related to its phase via the transform
Vi = tan θ j

2 . Under this transformation, (1a)–(1d) represents
a network of theta neurons [40], which can be considered a
network of globally coupled oscillators. Thus, the network
satisfies the conditions for the existence of the Ott-Antonsen
manifold, a low-dimensional manifold along which the net-
work dynamics are guaranteed to evolve for N → ∞ [25,41].
This manifold can be described for (1a)–(1d) by following the
Lorentzian ansatz described in Ref. [29], i.e., by making the
assumption that the state variables Vi are distributed according
to a Lorentzian where the probability density of V for back-
ground excitability η at time t is given by

ρ(V |η, t ) = 1

π

z(η, t )

[V − y(η, t )]2 + z(η, t )2
. (2)

The center y(η, t ) and half-width-at-half-maximum (HWHM)
z(η, t ) of Eq. (2) are associated with the mean firing rate
r(η, t ) and the membrane potential average over all neurons
v(η, t ) via z(η, t ) = πr(η, t ), and y(η, t ) = v(η, t ), respec-
tively. Due to the conservation of the number of neurons, the
network dynamics obey the following continuity equation:

∂tρ + ∂V

[(
V 2 + η + I

τ
+ Jreff

)
ρ

]
= 0, (3)

where reff = 1
N

∑N
j=1 X −

j U +
j S j is the effective mean-field net-

work activity that arrives at each neuron. By inserting Eq. (2)
into Eq. (3) it can be shown that the dynamics of z(η, t ) and
y(η, t ) obey

∂tw(η, t ) = i

[−w(η, t )2 + η + I

τ
+ Jreff

]
, (4)

for any η, with w(η, t ) = z(η, t ) + iy(η, t ). Without synaptic
STP, i.e., for U (t ) = X (t ) = 1, Eq. (4) can be solved for cer-
tain choices of the background excitability distribution. The
most drastic reduction in the dimensionality of the system
can be achieved by choosing a Lorentzian distribution with
density function

g(η) = 1

π




(η − η̄)2 + 
2
, (5)

where η̄ and 
 represent the center and HWHM of the distri-
bution, respectively. This choice allows one to solve

ẇ =
∫ ∞

−∞
∂tw(η, t )g(w)dw (6)

using the residue theorem of complex analysis, i.e., by eval-
uating the integral at the two poles of g(w) given by η̄ ± i
.
Subsequently, Eq. (4) can be solved for r and v, yielding

τ ṙ = 


πτ
+ 2rv, (7a)

τ v̇ = v2 + η̄ + I (t ) + Jrτ − (πrτ )2, (7b)

where we additionally used reff = 1
N

∑N
j=1 S j = r.

However, for nonconstant X and U , solving Eq. (4) for
r and v becomes a nontrivial problem. In this case, reff =
1
N

∑N
j=1 X −

j U +
j S j �= r and, hence, reff must be calculated to

arrive at closed-form equations for r and v. Two major prob-
lems have to be solved in this regard: (a) The effective network
input reff has to be expressed via mean-field variables such as
the average firing rate r and average depression and facilita-
tion variables x and u. If this cannot be done, the mean-field
equations would still contain neuron-specific variables, thus
increasing their dimensionality dramatically. (b) The mean-
field equations for the average depression x = 1

N

∑N
i=1 Xi and

facilitation u = 1
N

∑N
i=1 Ui have to be solved. However, the

evaluation of these sums requires one to solve the coupled,
nonlinear differential equations (1b) and (1c), which only has
been achieved for stationary network input so far [39]. In the
following section, we will address problem (b) and compare
our results with recently proposed mean-field equations for a
similar synaptic STP model [42]. The remainder of this article
will address different attempts to solve problem (a).
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III. ANALYTICAL SOLUTIONS FOR MICROSCOPIC STP

As argued in the previous section, finding closed-form
mean-field equations for the system given by equations (1) re-
quires one to calculate the average depression x = 1

N

∑N
i=1 Xi

and average facilitation u = 1
N

∑N
i=1 Ui across neurons. We

start by considering neuron i that spikes periodically with a
period T , thus producing a spike train Si(t ) = ∑∞

n=−∞ δ(t −
nTi ). The interspike interval Ti corresponds to a firing rate
of 1/Ti. In this scenario, solutions for the microscopic STP
variables can be obtained analytically [39]. The evolution
equations for synaptic short-term depression Xi and short-term
facilitation Ui are given by Eq. (1b) and Eq. (1c), respectively.
For the remainder of this section, we will omit the neuron
index i for brevity. The (relative) strength of a synapse is
given by 0 < U +X − < 1. We denote U by U −

n just before
the corresponding neuron emitted its nth spike, and by U +

n
just after the nth spike. Solving the homogeneous part of the
model equation, we obtain

U −
n+1 = U0 + (U +

n − U0) exp(−T/τu), (8)

and the change of U due to a spike is found to be

U +
n+1 = U −

n+1 + U0(1 − U −
n+1). (9)

These expressions can be reformulated into the following
iteration scheme:

U +
n+1 = U0 + (1 − U0)[U0 + (U +

n − U0)e−T/τu ], (10a)

U −
n+1 = U0 + (1 − U0)U −

n e−T/τu . (10b)

For the depression variable X , we find the following set of
equations:

X +
n+1 = 1 + [(1 − αU +

n )X −
n − 1]e−T/τx , (11a)

X −
n+1 = (1 − αU +

n+1)[1 + (X +
n − 1)e−T/τx ]. (11b)

In the stationary case, i.e., in the absence of transient dy-
namics, stationary solutions U +

� = U +
n , U −

� = U −
n and X −

� =
X −

n , ∀n can be found:

U +
� = U0 + U0(1 − U0)[1 − exp(−T/τu)]

1 − (1 − U0) exp(−T/τu)
, (12a)

U −
� = U0

1 − (1 − U0) exp(−T/τu)
, (12b)

X +
� = (1 − αU +

� )[1 − exp(−T/τx )]

1 − (1 − αU +
� ) exp(−T/τx )

, (12c)

X −
� = 1 − exp(−T/τx )

1 − (1 − αU +
� ) exp(−T/τx )

. (12d)

It is interesting to note that these results differ from firing
rate descriptions, where neural spiking activity is described
by a firing rate. To arrive at a rate description, we replaced the
spike train with interspike interval T by a firing rate r0 = 1/T .
Since neurons are assumed to spike periodically, the firing
rate of each neuron is constant. Therefore, neurons receive
constant synaptic inputs, and we can set U̇ = Ẋ = 0 in Eq. (1)
to obtain the simpler expressions

U� = U0 + U0τur0

1 + U0τur0
, (13a)

X� = 1

1 + ατxU �r0
, (13b)

where we have made use of U +
� = U −

� = U�, as well as
X +

� = X −
� = X� since spike times are irrelevant in the rate

description.
In Fig. 2 we compare these solutions for varying firing

rates. As can be seen, the results for constant firing rates
r0 are more closely related to the adaptation variables before
spikes than after spikes. This shows that it does matter for
microscopic STP whether exact spike timings and the time of
evaluation of U and X are considered or not, a finding which
we expect to hold for nonstationary firing rates S(t ) as well.

The expressions derived above can be used to evaluate the
mean-field quantities x and u, if the spike times or firing rates
of all neurons are known. Alternatively, they can be used to
evaluate reff directly. In the following sections, we will address
the problem of evaluating reff to derive the mean-field equa-
tions for equations (1). We will derive two different mean-field
models, for which the results of this section will be used
to refine the mean-field descriptions of the presynaptic STP
dynamics. In this context, we will evaluate how Eq. (12) vs.
Eq. (13) affect the mean-field dynamics of the QIF network.

IV. MEAN-FIELD DERIVATION UNDER A POISSONIAN
ASSUMPTION OF NEURAL DYNAMICS

Recently, an approach for the derivation of a mean-field
model for a QIF network has been presented in Ref. [37] for
the following set of equations:

τV̇i = V 2
i + ηi + I (t ) + Jτ

N

N∑
j=1

X −
j U −

j S j, (14a)

τxẊi = 1 − Xi − αX −
i U −

i Siτx, (14b)

τuU̇i = U0 − Ui + U0(1 − U −
i )Siτu, (14c)

Si =
∑

k\t k
i <t

∫ t

−∞
a(t − t ′)δ(t ′ − t k

i )dt ′. (14d)

The authors used a mean-field approximation of macro-
scopic quantities x and u, averaged over all neurons in the
network, that has been proposed in Ref. [42]. In this article, a
mean-field approximation of the effective network input

reff (t ) = 1

N

N∑
j=1

U −
j X −

j s j, (15)

is derived, where X −
i and U −

i are given by Eq. (14b) and
Eq. (14c), respectively. Note that the original STP model
formulation described in Ref. [39] uses U +

j X −
j as the effective

weight of a synapse at the time of an incoming spike, whereas
U −

j X −
j is used in Ref. [42]. As shown in Fig. 2(c), these

two choices can lead to substantial differences of the synap-
tic weight for small input rates. Since an effective synaptic
weight of U −

j X −
j is also used in Ref. [37], we will discuss

the validity of their mean-field description for both the spik-
ing neural network given by Eq. (1) and the spiking neural
network considered in Ref. [37]. Henceforth, we will refer to
the former as SNNpre and to the latter as SNNpre II. Under the
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(a) (b) (c)

FIG. 2. Comparison of the microscopic adaptation variables before and after spikes for discrete spikes and for constant firing rates r0. The
interspike interval T is varied. The constant firing rate is expressed as r0 = 1/T . Parameters: α = 0.1, U0 = 0.2, τx = 50.0, and τu = 20.0.

assumption that all Si follow independent Poisson processes,
the effective network input in SNNpre II is approximated by
reff ≈ u(t )x(t )r(t ), where r(t ) is the average firing rate across
neurons at time t . As explained in Ref. [42], this mean-field
approximation rests on two assumptions: (i) Synapse indices
can be randomized, i.e., the spike times matter, but not the
synapses at which those spikes occur. (ii) The average impact
of a spike on Xi and Ui, ∀i can be approximated by sampling
from Gaussian distributions around the current values of x and
u. A first-order mean-field approximation is then given by

τxẋ = 1 − x − ατxxur, (16a)

τuu̇ = U0 − u + U0τu(1 − u)r. (16b)

As can be seen from these equations, both x and u are
driven by the average firing rate r = 1

N

∑N
j=1 S j of the QIF

network. This allows to one to apply the Lorentzian ansatz in
the same way as demonstrated for postsynaptic depression in
Ref. [34]. The dynamics of the complex variable w(η, t ) can
be expressed as

∂tw(η, t ) = i

[−w(η, t )2 + η + I (t )

τ
+ Jxur

]
(17)

and by evaluating Eq. (17) at πr(t ) + iv(t ) = w(η̄ − i
, t )
one finds that the dynamics of r and v follow:

τ ṙ = 


πτ
+ 2rv, (18a)

τ v̇ = v2 + η̄ + I (t ) + Jxurτ − (πrτ )2. (18b)

We will refer to the set of mean-field equations given by
(16) and (18) as FREPoisson where FRE stands for firing rate
equations. Short descriptions and equation references for each
of the SNNs and mean-field models derived throughout this
article can be found in Table I.

It is important to notice that FREPoisson cannot be con-
sidered exact. While assumption (I) holds for a network of
independent, homogeneous Poisson neurons (hence called
Poissonian assumption), it does not hold in general [42].
Therefore, the mean-field derivation essentially approximates
a heterogeneous network of deterministic QIF neurons by a
homogeneous network of stochastic Poisson neurons. Further-
more, the first-order approximation given by Eq. (16a) and
Eq. (16b) ignores the nonlinear interaction between Xi and Ui

in Eq. (1b). As shown in Ref. [42], considering second-order

dynamics can improve the accuracy of the mean-field approx-
imation, especially in the vicinity of transient inputs to the
network. Adding second-order dynamics would involve sam-
pling from a multivariate Gaussian distribution over (x, u),
however. This means that the mean-field derivation could
not be considered deterministic and, hence, also not exact
anymore.

Still, it has been shown in Ref. [37] that FREPoisson can
accurately describe the mean-field dynamics of SNNpre II
under certain conditions. To test whether this holds in gen-
eral, we compared the dynamics of the two models for three
different STP parametrizations, leading to synapses that are
either depressing, facilitating, or depressing and facilitating.
We solved the initial value problem of both sets of equations
via an explicit Euler formalism with an integration step-size of
dt = 0.0001. This step size was sufficiently small to capture
the dynamics of the network and was used for all subsequent
numerical integration problems as well. We then applied rect-
angular input pulses to the models and observed their dynamic
responses around these inputs. The resulting time series can be
observed in Fig. 3. For purely depressing synapses, we find
that there is a substantial mismatch between the mean-field
dynamics of SNNpre II and FREPoisson. As can be seen in
Fig. 3(a) for the average depression x, there is a considerable
offset between the mean-field model (orange) and the average
of Xi evaluated across neurons in the QIF network (black).
With respect to purely facilitating synapses, we find that the
mean-field model provides a reasonable approximation of the
QIF network. Even though offsets can be observed between
the mean-field model and the QIF network [see dynamics of
v in Fig. 3(b)], the qualitative behavior of the QIF network is
captured well by the mean-field model. This holds both in the
steady-state regimes and during transient behavior around the
on- and offsets of the input I (t ). In the case of synapses with
short-term depression and facilitation, the mean-field model
expresses a substantial mismatch to the QIF network dynam-
ics again. For example, Fig. 3(c) shows that the dynamics of
the average firing rate r express focus dynamics for FREPoisson

after the onset of the first stimulus, whereas the average firing
inside SNNpre II does not show such behavior. In the upper
row of Fig. 3, we show the evolution of the distribution over
the combined synaptic state XiUi in the microscopic model.
We find that this distribution tends to express multimodalities
in regions with a strong mismatch between mean-field and
microscopic model. These results suggest that the mean-field
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FIG. 3. Evolution of the state variables of a QIF network and a mean-field approximation thereof for three different types of synaptic
short-term plasticity [(a) depression, (b) facilitation, and combined (c) depression and facilitation]. The first two rows show the distribution over
the synaptic state XjUj and the spiking activity of 100 randomly selected neurons, respectively. The last four rows show a comparison between
the spiking neural network (black) and the mean-field approximation (orange) for the average firing rate r, the average membrane potential
v, the average depression x, and the average facilitation u. In the SNN, averages were calculated across neurons i. Gray-shaded areas depict
time intervals in which a rectangular input of I (t ) = 2.0 was applied to the model [the effects of I (t ) and η̄ on the QIF model are identical].
Color bars depict the probability density inside a given bin of the distribution over XiUi. Parameters for (a) U0 = 1.0, α = 0.1. Parameters for
(b) U0 = 0.2, α = 0.0. Parameters for (c) U0 = 0.2, α = 0.1. Other model parameters: τ = 1.0, 
 = 2.0, η̄ = −3.0, J = 15.0

√

, τx = 50.0,

τu = 20.0, N = 10000.
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TABLE I. Model definitions.

Abbreviations Descriptions Equations

SNNpre Spiking neural network model with synaptic STP given by
Tsodyks model

(1)

SNNpre II Spiking neural network model with synaptic STP given by a
simplified Tsodyks model

(14)

FREPoisson Firing rate equations derived via the Poissonian assumption (18)
FREMPA Firing rate equations representing multiple coupled FREPoisson

populations
(21)

FREaa1 Firing rate equations derived via the adiabatic assumption,
neglecting spike timings in the STP mean-field approximation

(26), (36)

FREaa2 Firing rate equations derived via the adiabatic assumption,
accounting for spike timings in the STP mean-field
approximation

(26), (37)

model can approximate the low-dimensional dynamics of the
QIF network only if Xi and Ui express unimodal, narrow
distributions. This finding makes intuitive sense, since the
mean-field approximation of the dynamics of Ui and Xi given
by Eqs. (16) represents a first-order approximation. Our re-
sults confirm that this approximation only performs well if
the mean over Xi and Ui contains much information about
the actual underlying distributions. Thus, by providing these
counter examples, we have shown that the mean-field model
resulting from the Poisson assumption does not provide an
exact mean-field description of the QIF network.

Since we are actually interested in the mean-field equa-
tions for SNNpre given by Eqs. (1), we now examine whether
FREPoisson can nonetheless provide an approximation of
SNNpre under some conditions. To gain further insight into
the relationship between the mean-field equations and the
QIF network, we asked whether there exists a QIF network
description for which the mean-field model given by (16a),
(16b), (18a), and (18b) can be considered exact. Indeed, such
a network exists and is easy to find. Since x and u are only
driven by the mean-field firing rate r, we can just introduce
microscopic variables Ui and Xi that enter the microscopic
evolution equation for vi in the same was as the macroscopic
evolution equation for v [Eq. (18b)] and are also driven by the
mean-field activity of the QIF network:

τV̇i = V 2
i + ηi + I (t ) + Jτ

N
UiXis, (19a)

τxẊi = 1 − Xi − αXiUisτx, (19b)

τuU̇i = U0 − Ui + U0(1 − Ui )sτu, (19c)

s =
N∑

j=1

∑
k\t k

j <t

∫ t

−∞
δ
(
t ′ − t k

j

)
dt ′, (19d)

where s = r is the mean firing rate across all neurons in the
network. Apart from the description of the STP dynamics, this
network description is equivalent to the one used in Ref. [34]
for a QIF network with postsynaptic depression. Indeed, under
a first-order approximation of the dynamics of x and u via the
Poissonian assumption, the system given by Eqs. (1), a QIF
network with presynaptic STP, is essentially approximated by
Eqs. (19), a QIF network with postsynaptic STP (see Fig. 1 for

a visualization of the differences between the two). Hence, we
will refer to the network given by Eqs. (19) as SNNpost.

Next, we compared the behavior of the two different QIF
network descriptions (SNNpre and SNNpost) to the mean-field
model dynamics. This was done to verify that FREPoisson is
indeed an exact mean-field model of SNNpost and to see under
which conditions pre- and postsynaptic STP have similar or
different effects on the QIF network dynamics. To this end,
we used bifurcation analysis to identify phase transitions in
the mean-field model around which we compared the behavior
of the three models. This way, we were able to set up stimu-
lation paradigms that induce strong changes in the dynamic
behavior of the mean-field model and evaluate whether the
QIF networks express qualitatively similar phase transitions
or not. Bifurcation analysis was performed numerically, using
the Python software PyRates [43], which provides an interface
to the parameter continuation software Auto-07p [44]. We
initialized the mean-field model with either purely depressing
synapses (U0 = 1.0, α = 0.04) or purely facilitating synapses
(U0 = 0.2, α = 0.0). In each case, we performed a parameter
continuation in the background excitability η̄ for two different
values of 
 ∈ 0.01, 0.4. The latter introduces two different
levels of firing rate heterogeneity to the QIF network. We
expected this firing rate heterogeneity to directly affect the
broadness of the distributions over Xi and Ui. If that is indeed
the case, the mean-field model should provide a better descrip-
tion of the SNNpre dynamics for 
 = 0.01 than for 
 = 0.4.

As can be seen in Figs. 4(a) and 4(b), we identified fold
bifurcations for facilitating synapses for 
 = 0.4 as well as

 = 0.01. These fold bifurcations mark the outer limits of
a bistable regime in which a stable high-activity focus and
a stable low-activity node can coexist, separated by a saddle
focus. Indeed, we find that the steady-state behavior of the
mean-field model and SNNpost can be forced toward either of
the two stable equilibria via extrinsic stimulation. As shown
for 
 = 0.4 and 
 = 0.01 in Figs. 4(a) and 4(b), respectively,
there is always a very good agreement between those two
models. Regarding SNNpre, we failed to identify the bistable
regime for 
 = 0.4. In Fig. 4(a), it can be seen that the
system behavior is only governed by a high-activity focus,
even though the mean-field model predicts the coexistence of
a low-activity stable node for η̄ = −0.6. Thus, the mean-field
model fails to predict the behavior of the QIF network with
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FIG. 4. Comparison between FREPoisson (orange), SNNpre (black), and SNNpost (purple) for four different parameter sets [(a)–(d)]. The first
column shows 1D bifurcation diagrams in η̄. Gray triangles represent fold bifurcations and green circles represent Andronov-Hopf bifurcations.
Blue dashed lines mark the value of η̄ that was used for the firing rate and spike raster plots in the second column. Spike raster plots show
the spiking activity of 50 randomly selected neurons of SNNpre. Gray areas represent time intervals during which an extrinsic input I (t ) was
applied to the models [the effects of I (t ) and η̄ on the QIF model are identical]. Remaining model parameters: J = 8.0, τu = 20.0, τx = 50.0,
τ = 1.0, and N = 10 000.
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presynaptic STP in this case. However, in the case of very
low heterogeneity, we identified both stable states in SNNpre

and found a good agreement with the mean-field model [see
Fig. 4(b)].

For depressing synapses, we found regimes of synchro-
nized oscillations that emerge via Andronov-Hopf bifurca-
tions for small as well as for high firing rate heterogeneity
[see Figs. 4(c) and 4(d)]. Again, these oscillations could be
induced in FREPoisson as well as in SNNpost with a very good
match between the two. Consistent with our findings for fa-
cilitating synapses, SNNpre expressed oscillations only for

 = 0.01 [see Fig. 4(d)]. For higher firing rate heterogeneity
(
 = 0.4), the network did not show any tendency to oscillate
at all, even though the mean-field model predicted oscillations
to be present at η̄ = −0.85 [see Fig. 4(c)].

Thus, our results confirm that FREPoisson is indeed an
exact mean-field equation of SNNpost. Furthermore, they
demonstrate that SNNpre and SNNpost can behave both very
differently and very similarly, depending on the firing rate
heterogeneity inside the network. In our simulations, we were
able to control this heterogeneity successfully via the param-
eter 
. In regimes of low firing rate heterogeneity, SNNpre

and SNNpost expressed similar behavior, thus allowing for a
good approximation of the mean-field dynamics of SNNpre

via FREPoisson. In regimes of high firing rates heterogeneity,
the opposite was the case. In the next sections, we investigate
whether more accurate mean-field models of QIF networks
with presynaptic STP can be derived and, if so, how they
perform near the parameter regimes described in this section.

V. MULTIPOPULATION APPROXIMATION OF
DISTRIBUTED PARAMETERS IN THE QIF NETWORK

In the previous section, we have found that FREPoisson is
in good agreement with the dynamics of SNNpre, when the
distribution of ηi is particularly narrow, i.e., when 
 
 1.
Here we exploit this fact and approximate the mean-field dy-
namics by dividing the microscopic network into subnetworks
with narrow distributions in ηi. In other words, the Lorentzian
distribution with {η̄, 
} is divided into a set of M Lorentzian
distributions with {η̄m,
m}, m = 1, . . . , M, such that


/π

(η − η̄)2 + 
2
≈ 1

M

M∑
m=1


m/π

(η − η̄m)2 + 
2
m

. (20)

The resulting set of equations for the evolution of the
mean-field variables is then given by

τ ṙm = 
m

πτ
+ 2rmvm, (21a)

τ v̇m = v2
m + η̄m + I (t ) + Jτ

M

M∑
n=1

xnunrn − (πrmτ )2, (21b)

ẋm = 1 − xm

τx
− αumxmrm, (21c)

u̇m = U0 − u

τu
+ U0(1 − um)rm. (21d)

We will refer to this set of mean-field equations as FREmpa

for multipopulation approximation. One assumption we make

here is that each subnetwork contains the same number of
neurons, which means that the weights for each subnetwork
are the same, and the mean-field variables can be obtained by
computing the mean y = (1/M )

∑M
m=1 ym, where y represents

the mean-field variable under consideration. The parameters
η̄m and 
m are chosen as follows:

η̄m = η̄ + 
 tan
π (2m − M − 1)

2(M + 1)
, (22a)


m = 


[
tan

π (2m − M − 1/2)

2(M + 1)

− tan
π (2m − M − 3/2)

2(M + 1)

]
. (22b)

The density of the parameters ηm follows the Lorentzian
distribution, and the 
m are chosen such that the half-widths
approximately match the distances between the centers of the
distributions of the subnetworks, i.e., η̄m+1 − η̄m ≈ 
m+1 +

m. The results are shown in Fig. 5(a). As can be seen,
even at large M the adaptation variables still show a small
discrepancy with the result obtained from the spiking neural
network SNNpre. We hypothesize that this difference is due to
different results for the adaptation variables when the firing
rate is assumed constant, and when it is assumed to be a
spike train with constant ISI, as shown in Fig. 2. In other
words, we expect that accounting for the fact that FREPoisson

was derived for SNNpre II instead of SNNpre will reduce the
difference. As the adaptation variables are in essence time-
averaged quantities, the adaptation variables could be posed
as x = (X − + X +)/2 and u = (U − + U +)/2. However, with
the update rules U + = U − + U0(1 − U −) and X + = X − −
αU +X −, this would yield out-of-bound values for X − at
x = 1, and U − at u = 0. The results shown in Fig. 2 suggest
that the mean-field variables are closest to X − and U −, which
is why we set X − ≈ x, and U − ≈ u. The update rule for U +
gives the following correction term:

U +(u) ≈ u + U0(1 − u). (23)

Inserting this term into the mean-field equations for FREmpa

produces a closer match of the mean-field variables with the
results of the microscopic model SNNpre, see Fig. 5(b).

As a final test of the predictive accuracy of FREMPA, we
examined how well the model can predict the onset of os-
cillations in the QIF network. Using bifurcation analysis, we
identified the Hopf bifurcation leading to the oscillations in
Fig. 4(c) and investigated the locus of that Hopf bifurcation in
the 2D parameter space spanned by η̄ and 
. This, we did
for both FREPoisson and FREMPA with M = 100 mean-field
populations. As shown in Fig. 6(a), we found that the Hopf
curves emerged from a Bogdanov-Takens bifurcation in both
FRE models. This represents the same bifurcation structure
as has already been identified for QIF networks with SD
(see Figs. 2 and 4 in Ref. [34] for the corresponding 1D
and 2D bifurcation diagrams, respectively). Furthermore, we
have shown the corresponding 1D bifurcation diagrams for
the FREPoisson model for 
 = 0.4 and 
 = 0.01 in Fig. 4(c)
and 4(d), respectively. Thus, we expect stable oscillations to
exist in the regions enclosed by the Hopf curves. As shown
in Fig. 6(a), the difference between the Hopf curves predicted
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by FREPoisson and FREMPA becomes larger when 
 increases.
For 
 = 0.4, FREPoisson predicts stable oscillations to exist
at η̄ = −0.85, which we already failed to find in the QIF

network in Fig. 4(d). FREMPA predicts the existence of a stable
node at η̄ = −0.85, however, and the existence of stable oscil-
lations for −0.66 < η̄ < −0.6. To see whether the oscillations
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FIG. 6. Phase transitions between steady-state and oscillatory regimes in FREPoisson and FREMPA. (a) 2D bifurcation diagram of the Hopf
curve in FREPoisson (orange) and FREMPA (blue). The arrow represents the phase transition introduced by I (t ) in either model [the effects of
I (t ) and η̄ on the QIF model are identical]. The black square represents the Bogdanov-Takens bifurcation from which the Hopf bifurcations
emerge. (b) The first row shows the simulated firing dynamics of the spiking neural network and both mean-field models. The second row
shows the corresponding spiking activity of 100 randomly selected neurons of SNNpre. Parameters: α = 0.04, U0 = 1.0, τ = 1.0, 
 = 0.4,
η̄ = −0.85, J = 8.0, τx = 50.0, τu = 20.0, N = 10 000, M = 100, and I (t ) = 0.23 for t > 250 and I (t ) = 0.0 otherwise.
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predicted by FREMPA indeed exist in SNNpre, we performed
numerical simulations where we initialized the QIF network at
η̄ = −0.85 and then forced it toward η̄ = −0.62 via extrinsic
stimulation. As can be seen in Fig. 6(b), the QIF network
expressed steady-state behavior for η̄ = −0.85 and started to
oscillate when pushed to η̄ = −0.62. Hence, FREMPA cor-
rectly predicted the existence of oscillatory bursts in the QIF
network for M = 100, but not for M = 1, for which FREMPA

reduces to FREPoisson. The bursts have similar properties as the
ones found in QIF networks with postsynaptic plasticity [34]
and can be expected to result from the interaction between
synaptic short-term depression and recurrent excitation via the
network. Comparing the firing rate dynamics of FREMPA and
SNNpre in Fig. 6 reveals a slight difference between the oscil-
lation period of the mean-field model and the QIF network.
This difference shows that FREMPA can not be considered
an exact mean-field model, even for M = 100. Still, we find
that it captures the phase transitions inside SNNpre well and
thus provides a reasonable trade-off between accuracy and
computational complexity.

VI. ADIABATIC APPROXIMATION OF STP DYNAMICS

For simplification, we will consider synapses with mere
short-term depression in this section, since we showed in
Sec. IV that the mismatch between the mean-field model
FREPoisson and the QIF networks SNNpre and SNNpre II could
be reproduced in this simpler case as well. We thus consider
the microscopic system given by

τV̇i = V 2
i + ηi + I (t ) + Jτ

N

N∑
j=1

X −
j S j, (24a)

τxẊi = 1 − Xi − αX −
i Siτx, (24b)

Si =
∑

k\t k
j <t

∫ t

−∞
a(t − t ′)δ

(
t ′ − t k

j

)
dt ′. (24c)

In this system, we approximate the STP dynamics given
by Eq. (24b) via a linear differential operator L, i.e., LXi(t ) =
Si(t ). In such a linear case, a Green’s function G(t ) exists that
allows one to express the dynamics of Xi via a convolution of
G(t ) with the spiking activity of neuron i:

Xi(t ) =
∫ t

−∞
G(t − t ′)Si(t

′)dt ′ = G ∗ Si. (25)

Then, since Si is related to z(ηi, t ) via Siπ = z(ηi, t ), Eq. (4)
can be written as

∂tw(η, t ) = i

[−w(η, t )2 + η + I (t )

τ

+ J

(
G ∗ Re(w)

π

)
Re(w)

]
. (26)

To solve Eq. (26) for r and v, the effective firing rate
reff = ∫ ∞

−∞(G ∗ r(η))r(η)g(η)dη must be determined, which
requires one to evaluate the product between the single cell
firing rate and a convolution of itself. This makes it difficult
to find a closed-form solution for r and v, since the synap-
tic depression kernel G cannot simply be pulled out from
the convolution integral. The simplest approximation of this

problem is to replace the convolution integral by a mean
synaptic depression, as is done for the Poissonian assump-
tion. Alternatively, we assume that the dynamics of Xi are
slow in comparison to the dynamics of vi. For the relaxation
dynamics of Xi, this assumption is met if τx � τ . We note
here, however, that the spiking activity of the neuron also
introduces a relatively fast timescale to Eq. (24b), which may
violate our assumption. Still, under this assumption, we can
apply an adiabatic approximation to the system and consider
the dynamics of the fast subsystem for effectively constant
adaptation (see Refs. [34,45] for a similar approach):

τV̇i = V 2
i + ηi + I (t ) + Jτ

N

N∑
j=1

X −
j S j, (27a)

Si =
∑

k\t k
j <t

∫ t

−∞
δ(t ′ − t k

j )dt ′, (27b)

where Xj is approximated as neuron-specific constant. Due to
the Lorentzian distribution of the background excitabilities ηi

and the resulting heterogeneity of single cell firing rates in
the network, Xi cannot be assumed as homogeneous across
neurons. Instead, it must be considered a distributed quan-
tity, governed by a probability density function h(Xi ). Then,
the main difficulty in developing the mean-field description
lies in the fact that h(Xi ) is generally unknown if a mean-
field variable is considered. More precisely, if we consider
the mean-field variable x that describes the average synaptic
depression across the network, little is known about the dis-
tribution of the microscopic variables Xi, which is required to
determine the effective firing rate reff . By using the adiabatic
approximation, we argue that an approximation of reff can be
obtained by estimating the distributions X (η) and r(η) from
the mean-field variables in the stationary case, and solving

reff =
∫ 1

0

∫ ∞

−∞
Xr(η)h(X |η)g(η)dηdX. (28)

Assuming independent Lorentzian density functions for h and
g, i.e., h(X |η)g(η) = h(X )g(η), Eq. (26) would only need to
be evaluated at the poles in the lower half-planes πr(t ) +
iv(t ) = w(η̄ − i
, X̄ − i
X , t ), where X̄ and 
X would rep-
resent the center and HWHM of the Lorentzian distribution
over X , respectively. Then, the effect of presynaptic STP
on the network dynamics would effectively reduce to a dis-
tribution over the coupling parameter J . For the mean-field
equations of a QIF network with distributed coupling param-
eters see Ref. [29]. However, h and g cannot be assumed to
be independent, since ηi controls the firing rate of neuron i,
which in turn controls its synaptic depression Xi. Furthermore,
X is bound between [0, 1] and hence a Lorentzian distribution
cannot be assumed. In the upper row of Fig. 3, we show
the evolution of the distribution over XiUi for three differ-
ent parametrizations, corresponding to a purely depressing
synapse, a purely facilitating synapse, and a synapse with
facilitation and depression acting on different timescales. Im-
portantly, the evolution of the distribution reveals that it is not
always unimodal. For purely depressing synapses, it clearly
expresses an at least bimodal distribution over the whole time
course. Thus, finding an appropriate form of h that holds in
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general is a highly nontrivial problem that we did not find a
solution for.

To further simplify the problem, we assume that the depres-
sion of a neuron’s efferent synapses Xi is merely a function of
the firing rate ri of the same neuron. The stationary firing rate
of a QIF neuron in response to an external input Iin is

√
Iin/π

if Iin > 0, and zero otherwise. Hence, the distribution of firing
rates for a given input is (in the stationary case) given by

r(η; Iin ) = H (η + Iin )
√

η + Iin/π, (29)

where H is the Heaviside step function. Therefore, for any
given mean-field firing rate r one can find a unique constant Ir

for which

r =
∫ ∞

−∞
r(η; Ir )g(η)dη, (30)

which allows us to translate the mean-field variable r into the
distribution r(η; Ir ).

Similarly, we can use the assumption that Xi is a function
of ri to translate the mean-field variable for synaptic depres-
sion, x, into the distribution X (η; Ix ). First, we use the rate
relationship given by Eq. (13) to approximate

x(η; Ix ) = 1/[1 + ατxr(η; Ix )], (31)

for any given input Ix, and then define

x1 =
∫ ∞

−∞
g(η)/[1 + ατxr(η; Ix )]dη. (32)

Alternatively, we can use Eq. (12) to approximate the distri-
bution x(η) in the spiking scenario:

x(η; Ix ) = 1 − exp[−1/τxr(η; Ix )]

1 − (1 − α) exp[−1/τxr(η; Ix )]
, (33)

which yields

x2 =
∫ ∞

−∞

{1 − exp[−1/τxr(η; Ix )]}g(η)

1 − (1 − α) exp[−1/τxr(η; Ix )]
dη. (34)

Having obtained Ir and Ix, we can ultimately compute

reff =
∫ ∞

−∞
r(η; Ir )x(η; Ix )g(η)dη, (35)

where x(η; Ix ) is either chosen for the rate scenario [Eq. (31)],
or in the spike scenario [Eq. (33)]. This requires one to solve

reff = 


π2

∫ ∞

min(−Ix,−Ir )

1

1 + ατx
√

η + Ix

√
η + Ir

(η − η̄)2 + 
2
dη,

(36)
in the rate scenario, and

reff = 


π2

∫ ∞

min(−Ix,−Ir )

exp
(

π

τx
√

η+Ix

) − 1

exp
(

π

τx
√

η+Ix

) − (1 − α)

×
√

η + Ir

(η − η̄)2 + 
2
dη, (37)

in the spiking scenario. We refer to this mean-field model as
FREaa for adiabatic approximation, with FREaa1 and FREaa2

denoting the mean-field model considering the rate and spike
scenario, respectively.

The integrals involved in this approximation are hard to
evaluate analytically, therefore we solve these integrals nu-
merically for a range of values of Ir and Ix and create look-up
tables for Ir , Ix, and reff in order to be able to integrate the re-
sulting model equations numerically. In Fig. 7 we compare the
results of the mean-field model FREaa with the dynamics of
the spiking neural network SNNpre, and the mean-field model
FREPoisson. We find that FREaa is closer to the microscopic
dynamics of SNNpre than FREPoisson.

VII. CONCLUSION

In this work, we examined whether spiking neural net-
works with presynaptic short-term plasticity allow for the
derivation of low-dimensional mean-field equations via the
Lorentzian ansatz described in Ref. [29]. To this end, we con-
sidered heterogeneous, all-to-all coupled QIF networks with
presynaptic STP dynamics, described by a well-known phe-
nomenological model of synaptic short-term depression and
facilitation [39]. For such QIF networks, other forms of STP
have already been shown to be compatible with the Lorentzian
ansatz [34]. In the case of presynaptic STP, we identified the
evaluation of the effective network input reff as the central
problem for a mean-field derivation via the Lorentzian ansatz.
This effective network input represents a weighted sum of
incoming spikes, where the weights are given by the presy-
naptic depression and facilitation terms. We presented three
different approaches to express reff and thus find the mean-
field equations: First, a mean-field description of the STP
dynamics via the Poissonian assumption used in Ref. [37];
second, a multipopulation approximation that approximates
distributed parameters inside the QIF network via a set of
coupled subpopulations with different parametrizations; and
third, an adiabatic approximation of the STP timescales.

For the first approach, the effective network input reff is
approximated by a modulation of the mean-field firing rate
with an average depression and an average facilitation. Our
analysis revealed that this approach essentially approximates
presynaptic STP with postsynaptic STP. We compared the
behavior of QIF networks with pre- vs. postsynaptic STP and
found that they can express substantial qualitative differences
in their dynamics, especially when SNNpre expresses a high
firing rate heterogeneity across neurons. Near such regimes,
FREPoisson follows the dynamics of SNNpost, and thus fails to
capture the behavior of SNNpre. It is worth noticing that the
mean-field derivation via the Poissonian assumption works
well for networks of homogeneous Poisson neurons with in-
dependent noise [42]. In such networks, single cell firing rates
can differ momentarily due to noise, but approach the same
rate when averaged over increasing time intervals. This is a
very different scenario compared to the QIF network consid-
ered here, where the Lorentzian distribution over ηi causes
substantial heterogeneity in the single cell firing rates. Hence,
the Poissonian approximation becomes worse the stronger the
heterogeneity of single cell firing rates inside the QIF network
is. In Ref. [37], where the Poissonian approximation was first
applied to a QIF network with presynaptic STP, the authors
chose QIF networks with relatively low firing rate hetero-
geneity, leading to a good correspondence with the mean-field
model. Here we clarified that this correspondence does not
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FIG. 7. (a) Comparison of the mean-field variables of the microscopic spiking neural network, the mean-field model using the Poissonian
assumption, and the mean-field model with approximation of the effective firing rate. Gray areas indicate time intervals with I (t ) = 3.0 [the
effects of I (t ) and η̄ on the QIF model are identical]. (b) Look-up table for the conversion of Ir and Ix into the effective firing rate reff in the rate
scenario [Eq. (36); FREaa1], and (c) in the spiking scenario [Eq. (37); FREaa2]. Parameters: α = 0.1, τ = 1.0, 
 = 1.0, η̄ = −2.0, J = 15.0,
τx = 50.0, τu = 20.0, and N = 10 000.

generalize to regimes where the QIF network expresses more
heterogeneous firing rates.

Populations of neurons that naturally express heteroge-
neous firing rates exist in subcortical structures, for example.
Single cell firing rates in the globus pallidus have been shown
to differ substantially across neurons [46,47]. This firing rate
heterogeneity has been suggested as an important desynchro-
nization mechanism of pallidal activity [48,49]. Our results
suggest that studying the mean-field dynamics in such a
population via FREPoisson comes at the risk of substantial
errors. We thus developed a mean-field model that addresses
the issue of high firing rate heterogeneities. Since the dis-
tribution over ηi is the source of heterogeneity in the QIF
network, we attempted to improve the mean-field model by
considering a set of coupled subnetworks with distinct, but
narrow distributions over ηi. This way, the neurons inside
each subpopulation are parametrized such that they express
a considerably lower firing rate heterogeneity than the overall
network. We found that, by increasing the number of subpop-
ulations, the mean-field model converges to the QIF network
behavior. Of course, this approach leads to mean-field models
of relatively high dimensionality. Still, we found that a mean-
field model with 100 subpopulations (i.e., a 400-dimensional
model), accurately predicted phase transitions of the QIF net-
work from steady-state to oscillatory behavior in a regime
where FREPoisson failed to do so. Importantly, FREMPA can
be investigated by means of bifurcation analysis, whereas the
corresponding SNN cannot. Furthermore, the multipopulation
approach allows to consider other parameter distributions than
the Lorentzian distribution considered in this manuscript. In

Ref. [50] it is shown that a similar approach can be used
for Gaussian parameter distributions in QIF networks, lead-
ing to a considerable reduction in the number of required
subpopulations to achieve a good approximation of the QIF
mean-field dynamics. Thus, we argue that the multipopulation
approximation provides a useful tool for mean-field analyses,
the dimensionality of which can be freely chosen to achieve a
desired level of approximation accuracy.

As an alternative to the Poissonian approximation, we
applied an adiabatic approximation to the QIF network,
assuming slow STP dynamics in comparison to the QIF dy-
namics. This assumption is supported by experimental results
that suggest depression and facilitation recovery timescales
that are at least 10 times slower than typical membrane poten-
tial timescales [37,39,51]. Previously, this approach has been
used successfully for the derivation of mean-field equations
for QIF networks with spike-frequency adaptation [34]. By
approximating the presynaptic STP dynamics as slow, they
can be considered as constant, distributed quantities in the
fast subsystem. This way, the STP dynamics do not have to
be considered for the evaluation of reff . Instead, appropriate
distributions over the STP constants have to be chosen. In
our work, we derived analytical solutions of the microscopic
STP dynamics in the stationary case and used these solutions
to approximate the STP distributions. This approach can be
considered exact for the description of steady-state solutions
but not for transient dynamics. That is, the network must
have converged to an equilibrium for our approximation to
be accurate. Still, we find that our adiabatic approximation
provides a more accurate approximation of the mean-field
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dynamics of the QIF network dynamics than the Poissonian
approximation, even for transient dynamics. A disadvantage
of this method is, however, that we had to approximate the in-
tegrals over the STP distribution numerically and calculate reff

via look-up tables. This makes it more difficult to implement
the model equations and perform parameter continuations.

In conclusion, we performed a thorough analysis of the
problems that arise when attempting to derive the mean-field
equations for QIF networks with synaptic short-term plas-
ticity. Though we did not find a set of exact, closed-form
mean-field equations, we provided two different mean-field
approximations that we found to be more accurate than
a previously proposed mean-field model. Both of these

mean-field approximations can capture the qualitative dy-
namics of the QIF network and can thus be used for future
investigations of its macroscopic dynamics. Finally, our work
provides insight into the distinct effects that pre- vs. postsy-
naptic STP can have on the mean-field dynamics of spiking
neural networks.
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