
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220403032

Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron

Model

Article  in  SIAM Journal on Applied Dynamical Systems · January 2009

DOI: 10.1137/080724010 · Source: DBLP

CITATIONS

69
READS

256

2 authors:

Some of the authors of this publication are also working on these related projects:

Applied Mathematics View project

Mathematics View project

Bard Ermentrout

University of Pittsburgh

439 PUBLICATIONS   30,141 CITATIONS   

SEE PROFILE

Martin Wechselberger

The University of Sydney

81 PUBLICATIONS   3,195 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Bard Ermentrout on 31 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220403032_Canards_Clusters_and_Synchronization_in_a_Weakly_Coupled_Interneuron_Model?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220403032_Canards_Clusters_and_Synchronization_in_a_Weakly_Coupled_Interneuron_Model?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Applied-Mathematics-18?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mathematics-33?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bard-Ermentrout?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bard-Ermentrout?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Pittsburgh?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bard-Ermentrout?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin-Wechselberger?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin-Wechselberger?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Sydney?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Martin-Wechselberger?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bard-Ermentrout?enrichId=rgreq-01bdc628074e8f92697077958c403054-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQwMzAzMjtBUzoxMDMwMDY5MjYyNzg2NjJAMTQwMTU3MDE3MzQ1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


CANARDS, CLUSTERS AND SYNCHRONIZATION
IN A WEAKLY COUPLED INTERNEURON MODEL

BARD ERMENTROUT∗ AND MARTIN WECHSELBERGER†

Abstract. Applying a low current to a recent biophysical model for inhibitory neurons in the
cortex leads to mixed mode oscillations (MMOs), a mixture of spikes and subthreshold oscillations.
At higher currents, the neurons fire regularly. We show that a specific slow potassium current
underlies this behavior. Next we reduce this five-dimensional biophysical model for an inhibitory
neuron to three dimensions with a slow/fast time-scale structure. We then show that there is a
range of parameters under which the reduced model shows MMOs which can be explained by the
canard phenomenon. Many inhibitory interneurons are coupled with electrical tight junctions (gap
junctions). We show that such coupling combined with the underlying MMOs produces clustered
solutions in large networks. We explain this using the thoery of weakly coupled oscillators and show
that the complex dynamics arises from sensitivity near the canard.

Key words. canards, synchrony, weak coupling,clusters, neurons

37G05,92C20, AMS subject classifications.

1. Introduction. Electrical coupling via gap junctions is widespread in net-
works of cortical inhibitory neurons [18, 38]. The effects of such electrical coupling
has been the focus of much experimental and theoretical work [18, 38], [9, 41, 37,
15, 33]. Most experimental and theoretical findings show that electrical coupling can
help to coordinate synchronous oscillatory behaviour in inhibitory networks. Many
of the studies of gap junction coupling and oscillations concern pairs of cells (e.g.
[38, 37, 17, 41]) rather than larger networks. Synchrony is not the only possibility
when coupling via gap junctions and both the shape of spikes [9] and the intrinsic
dynamics [41] can destabilize synchronization. Combinations of gap junctions with
inhibitory coupling can lead to more complex behavior such as waves [26] and clusters
[40, 26] or can enhance the ability to synchronize [37, 33]. Clustered behavior in net-
works of oscillators often arises when there is multistability in pairwise interactions
(although this is not a requirement) and there have been numerous studies of such
behavior in oscillator networks [26, 28, 19, 1, 8, 3].

In this paper, we explore the relationship between intrinsic dynamics, coupling
and patterns of synchrony for a recently proposed interneuron model [13] endowed
with a slow potassium channel. We will focus on the formation of clusters and syn-
chronization in a network of electrically coupled interneurons. We first show, via
numerical simulations that at low currents and with weak coupling, these networks
organize themselves into clustered states that persist even in the presence of a small
amount of noise. At higher currents, the networks become synchronous. In order
to understand the mechanism by which there is a transition from clustering to syn-
chrony, we first examine the single cell model. We find that at low currents, there are
so-called mixed-mode oscillations (MMOs) [6], an alternation of subthreshold oscilla-
tions with spiking activity. Thus, we first turn our attention to the analysis of this
behavior. By reducing the system of five differential equations to one that has three
with a slow/fast time-scale structure, we are able to show that the underlying dy-
namics is due to the presence of a canard structure [4, 46, 49, 7, 50, 10, 24, 22, 5, 39].
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2 B. ERMENTROUT AND M. WECHSELBERGER

Such canard induced MMOs have been identified in other neuronal models as well
[12, 43, 44, 11, 23, 45, 34, 42]. Next, we use weak coupling theory to analyze the
weakly coupled network. The connection between the canards and the clustering is
through the complex response of individual neural oscillators to perturbations (the
adjoint of the linearized dynamics) which makes the weak interaction between oscil-
lators very complicated. As we discuss later in the paper, the key requirement for the
formation of two or more clusters is that the phase-interaction function be dominated
by higher order odd Fourier modes [36]. The underlying MMOs cause the emergence
of such modes and thus the appearance of robust clusters.

The paper is organized as follows: In Section 2 we present the Erisir model and
show numerical observations of MMOs, clustering and synchronization. In Section 3
we perform a single cell analysis to explain MMOs via the canard phenomenon. In
Section 4 we use weak coupling theory to show that the canard structure is responsible
for clustering in an inhibitory network. Finally, we conclude in Section 5.

2. The Erisir model.

2.1. Single cell. The single cell Erisir model [13] is a conductance-based model
of a fast-spiking (FS) cortical interneuron. (We remark that in the original Erisir
reference, there are typographical errors in the description of the equations. We are
using the version of the model in [38].) The ionic currents of the Erisir model consist
of a fast sodium current INa, two potassium currents, a ‘moderate’ delayed rectifier
IK associated with a Kv3.1 ion channel and a ‘slow’ delayed rectifier IKs associated
with a Kv1.3 ion channel, and a passive leak current IL. The model equations are:

C V ′ = Iapp − (INa + IK + IKs + IL) ,
x′ = (x∞(V ) − x)/τx(V ) , x = m,h, n, s ,

(2.1)

where C is the capacitance of the FS interneuron, Iapp is an applied (external)
current,

INa = gNa m3h(V − ENa) ,
IK = gK n2(V − EK) ,

IKs = gKs s4(V − EK) ,
IL = gL (V − EL)

(2.2)

are the ionic currents, where m is the activation gate and h is the inactivation gate of
the sodium current, n is the activation gate of the IK potassium current and s is the
activation gate of the IKs potassium current. The dynamics of each gate x = m,h, n, s
is towards the steady state voltage dependent sigmodial function x∞(V ) with the
characteristic voltage dependent bell-shaped time constant τx(V ). The parameters gy

(y = Na,K,Ks, L) and Ez (z = Na,K,L) are conductances and Nernst potentials of
the various ionic currents. All parameters and functions are defined in the Appendix
A.

Figure 2.1 shows the bifurcation diagram of the single cell Erisir model (2.1) where
the bifurcation parameter is the applied current Iapp (in pA/cm2). The cell is excitable
for Iapp < IHopf where IHopf ≈ 0.64 denotes a supercritical Hopf bifurcation. The
corresponding limit cycle loses stability at Iapp ≈ 0.65 due to a subcritical period-
doubling bifurcation which opens a parameter window up to Iapp = Isnlc ≈ 0.73 with
apparently no stable simple attractors. Isnlc denotes a saddle-node bifurcation of
limit cycles. For Iapp > Isnlc there exist large relaxation type oscillations.
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Fig. 2.1. Bifurcation diagram of Erisir model (2.1): Bifurcation parameter is the applied
current Iapp; supercritical Hopf bifurcation for Iapp ≈ 0.64; for Iapp ≈ 0.65 limit cycle loses stability
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Fig. 2.2. Voltage time traces of Erisir model (2.1): Upper/Left: small oscillatory pattern 01

for Iapp = 0.65; Upper/Middle: MMO pattern 19 for Iapp = 0.66, Upper/Right: MMO pattern 12

for Iapp = 0.70; Bottom/Left: MMO pattern 11 for Iapp = 0.72; Bottom/Middle: MMO pattern 21

for Iapp = 0.73, Bottom/Right: relaxation oscillation pattern 10 for Iapp = 0.74;

What are the attractors, if any exist, in this parameter window between small
amplitude subthreshold oscillations (STOs) and large amplitude relaxation type oscil-
lations (ROs)? Figure 2.2 shows time traces for several values of applied current Iapp.
STO patterns lose stability for Iapp ≈ 0.654 and MMO patterns show up as stable
solutions for the Erisir model filling the gap of stable solutions in Figure 2.1. The sim-
plest periodic MMO patterns are of the form Ls, where L denotes the number of ROs
and s denotes the number of STOs. For example, Figure 2.2 shows MMO patterns
of the form 19, 12, 11 and 21. STOs only can be viewed as a 01 MMO pattern while
ROs only can be viewed as 10 MMO patterns. Under the variation of the bifurcation
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Fig. 2.3. (A) Bifurcation diagram of Erisir model (2.1) when gKs = 0 as current varies.
Instead of membrane potential, the L2 norm of the solution is plotted as it produces a clearer picture.
Colored curves as in figure 2.1. (B) Two parameter diagram showing the branch of Hopf bifurcations
(HBs, red), saddle-nodes of fixed points (cyan) and saddle-nodes of limit cycles (SNLCs,green). gKs

for figure 2.1 is 0.018 which is out of the picture. In the region labeled “Bi” between the HBs and
the SNLCs, there is bistability between fixed points and large amplitude limit cycles. Mixed mode
oscillations are found in the region labeled “MMOs”.

parameter Iapp one observes the following sequence of simple MMO patterns:

01 → 1s∗ → · · · → 11 → 21 → · · · → L1
∗
→ 10

where s∗ can be an arbitrary large integer and L∗ is a finite upper bound. More
complicated MMO patterns are also possible and can be usually found in the transition
from one to another simple MMO pattern. In Section 3 we will show that these MMO
patterns can be explained by the canard phenomenon [7, 49].

Before turning to the coupling between such cells and our analysis of the canard
phenomenon, we remark that there are several other models for inhibitory interneu-
rons, e.g., the Wang-Buzsaki (WB) model [48] which do not seem to have any MMOs.
Notably absent in the WB model is the gKs channel. If we set this current to zero
in the Erisir model, the bifurcation from rest to repetitive oscillations is considerably
simpler and resembles the sequence in Izhikevich (2006) [31] (figure 6.40, page 197).
The recent model in [20] is like the Erisir model but without the slow potassium cur-
rent and instead an A-type potassium current. This model, too, has no MMOs, at
least in the parameters used by the authors. Figure 2.3A shows the corresponding
diagram to Figure 2.1 with the norm of the solution plotted for clarity. The Hopf
bifurcation (HB) is subcritical and terminates on a homoclinic. The large amplitude
limit cycle (red) is lost via a collision with an unstable limit cycle (blue) (saddle-node
of limit-cycles; SNLC). The unstable limit cycle is lost at a homoclinic. Between the
SNLC and HB, the system is bistable.

Figure 2.3B shows the two-parameter bifurcation diagram. Note that there is
only one fixed point for gKs larger than about 0.004. At gKs ≈ 0.0035, the curve
of SNLCs (shown in green) crosses to the right of the curve of HBs. In this region
there are neither stable fixed points nor large amplitude limit cycles. For small ranges
of the applied current and for gKs larger than about 0.0045, there are stable small
amplitude limit cycles, but, the region is primarily dominated by mixed mode oscilla-
tions. Indeed, the absence of a large amplitude limit cycle and a stable fixed point is
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Fig. 2.4. Simulation of 50 globally gap-junctionally coupled cells with Iapp = 0.7, gKs = 0.018,
ggap = 0.0002 with no noise, (A) and with σ = 0.002 amount of Gaussian noise, (B). Top figures
show the membrane potential of all 50 cells over a short time span (time goes down). Filled circles
show different groups of cells forming clusters that are nearly synchronized. Lower figures show the
voltage traces for representative cells in each cluster. This structure is robust to noise.

a necessary condition for MMOs. The Hopf bifurcation occurring on the lower branch
has a somewhat complex structure. For gKs larger than about 0.0095, the bifurca-
tion is supercritical and thus small amplitude oscillations stably bifurcate from rest.
However, in the interval 0.0045 < gKs < 0.0095, while the bifurcation is subcritical,
the small amplitude unstable branch turns around and gives birth to an interval of
stable small amplitude oscillations.

Thus, in this section, we have shown that the slow potassium current appears to
be crucial to get mixed mode oscillations. In the next sections we see what are the
consequences of this for weakly gap-junctionally coupled cells and then, we show that
the mechanism for MMOs is a generalized canard phenomenon.

2.2. Clustering and coupling. Cortical interneurons are usually coupled via
gap junctions and GABAergic (inhibitory) synapses. To get a better understanding
of clustering and synchrony properties of networks of interneurons we focus in this
work on networks with gap junctions only as the issues of time scales and reversal
potential no longer play a role [32, 47, 51].

We study a network of cortical interneurons by using the Erisir model (2.1) with
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Iapp = 0.675, ggap = 0.0002. As in figure 2.4, top shows voltage traces of all the cells and bottom
shows representative voltages for cells in the clusters. (B) gKs = 0 shows synchronization.

all-to-all coupling via gap junctions:

C V ′

i = Iapp − (INa + IK + IKs + IL + Igap,i) , i = 1, . . . , N
x′

i = (xi,∞(Vi) − xi)/τxi
(Vi) , xi = mi, hi, ni, si ,

(2.3)

where

Igap,i = ggap
1

N

N∑
j=1

(Vi − Vj)

is the gap junction current cell i receives from all its (N − 1) neighbors j. All the
other intrinsic ionic currents depend only on cell i itself. Additionally, to check for
robustness, in some simulations, we add a small amount of independent Gaussian
noise.

Figure 2.4 shows the result of a simulation of 50 cells coupled with ggap = 0.0002
and Iapp = 0.7. The cells organize themselves into three clusters of differing sizes.
This structure is robust to a small amount of Gaussian noise (shown in B).
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Figure 2.5 shows that STOs are necessary for the clustering to occur. In this
figure, Iapp = 0.675 and in the normal model there are three clusters as in Figure 2.4.
However, if we remove gKs, the slow potassium channel, then the neurons robustly
synchronize. Thus, the presence of the slow potassium current is needed for clustering
to occur. If we maintain the slow potassium current, but increase the applied current
into the regime where there is regular spiking (e.g, the red curves in Figure 2.1, say,
Iapp = 1), then the clustering disappears. If the coupling is strong enough, then
clustering disappears leaving only synchrony. Thus, it seems that the clusters are
a consequence of the interaction of subthreshold behavior with weak coupling. The
remainder of the paper explores the mechanism for MMOs and how these impact the
interactions for weak coupling.

3. Single cell analysis. In this section we want to uncover the mechanism that
generates MMOs in the single cell Erisir model (2.1). In particular, we want to show
that the generalized canard phenomenon [7, 49, 46, 39, 22, 50, 10] observed in slow/fast
time-scales problems explains the STOs within MMO patterns. The current theory
for MMOs via canards is developed for systems with 1 variable on the fast time-scale
and 2 variables on the slow time-scale. Therefore, the analysis splits into the following
parts: (a) identify 2 different time-scales in the Erisir model (Section 3.1); (b) perform
a model reduction of the full 5D model to a 3D model with 1 fast and 2 slow variables
(Section 3.2); (c) explain MMOs in the reduced problem via the generalized canard
phenomenon (Sections 3.3–3.4).

3.1. Dimensionless version of Erisir model. A standard procedure to iden-
tify different (time-)scales in a biophysical model is to bring such a system into di-
mensionless form. Only in dimensionless form can one decide which parameters are
small or large. We therefore rescale the dimensional variables V (dependent) and t
(independent) with appropriate reference scales kv and kt:

V = kv v , t = kt τ

where v and τ are the dimensionless versions of membrane voltage and time. Note
that all the gating variables x = m,h, n, s are dimensionless by definition. After
rescaling we obtain the following dimensionless version of the Erisir model (2.1):

C/(gNakt) v′ = Îapp − (ÎNa + ÎK + ÎKs + ÎL) ,
x′ = (kt/τx(v))(x∞(v) − x) , x = m,h, n, s ,

(3.1)

with

ÎNa = m3h(v − ÊNa) , ÎK = ĝK n2(v − ÊK) ,

ÎKs = ĝKS s4(v − ÊK) , ÎL = ĝL (v − ÊL) ,

Îapp = Iappl/(gNa kv)

(3.2)

and

ĝy = gy/gNa , y = K,Ks,L, Êz = Ez/kv , z = Na,K,L . (3.3)

If we look at the time traces in Figure 2.2 then we see that the membrane potential
varies in the order of 100mV (maximum around 120mV) and we choose kv = 100mV
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τn(V ) and n∞(V ) (yellow), and τs(V ) and s∞(V ) (blue). Note, V = 100 · v relates the voltage V
to its dimensionless counterpart v. Similarly, τx(V ) relates to τx(v) and x∞(V ) to x∞(v).

as a typical reference voltage scale1. Therefore, the right hand side of the voltage
equation v in system (3.1) is basically of order one and the parameter C/(gNa) ≈
10−2 ms represents a typical time-scale of the voltage equation.

To identify the typical time-scales of the gates x we have to look at the voltage
dependent time-scale functions τx(v) which are shown in Figure 3.1, left. We observe
that the maxima of all the bell shaped functions are in the subthreshold regime
(V ≤ −40mV ) except for the gate n which has its maximum at V ≈ 0mV . The bell
shape curve indicates that typical time-scales vary depending on if the cell is in the
subthreshold regime (V ≤ −40mV ) or in the action potential regime (V ≥ −40mV ).
In the subthreshold regime typical time-scale orders are:

τm ∈ (10−2, 10−1) , τh ∈ (100, 101) , τn ∈ (100, 101) , τs ∈ (101, 102) ,

while in the action potential regime typical time-scale orders are:

τm ∼ 10−2 , τh ∼ 100 , τn ∈ (100, 101) , τs ∈ (100, 101) .

We have to choose the minimum order of each τx, x = m,h, n, s, to obtain the
typical time-scale order of the gates. This suggests that m has a typical time-scale of
order 10−2 ms while the other gates (h, n, s) are of order 1ms. Alltogether, we have
identified the different time-scales in system (3.1): a fast time-scale of order 10−2 ms
for the fast variables (v,m) and a slow time-scale of order 1ms for the slow variables
(n, h, s). We choose kt = 1ms as the (slow) reference time-scale and we obtain:

ε v′ = Îappl − (ÎNa + ÎK + ÎKs + ÎL) ,
εm′ = (1/tm(v))(m∞(v) − m) ,

h′ = (1/th(v))(h∞(v) − h) ,
n′ = (1/tn(v))(n∞(v) − n) ,
s′ = (1/ts(v))(s∞(v) − s) ,

(3.4)

1In dimensional analysis, typical time-scales are found as combinations of the model parameters.
Since we have a plethora of choices in this model we decided to make an empirical choice for easier
comparison with the original model.
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Fig. 3.2. Time-traces in Erisir model for Iapp = 0.7; Left: voltage time trace V shows MMO
pattern 12; Right: corresponding time traces of gates - m (red); h (green), s (blue), n (yellow); Note
that the n-gate is basically zero in the subthreshold regime.

where ε := C/(gNa kt) ≈ 10−2 ≪ 1 is the singular perturbation parameter and
the functions tx(v) are appropriate dimensionless versions of τx(v). System (3.4) is a
slow/fast system with 2 fast variables (v,m) and 3 slow variables (h, n, s) on the slow
time-scale τ ( ′ = d/dτ).

3.2. Reduction to a 3D model.

Step 1: Reduction of fast variables. In the literature it is a common pro-
cedure to reduce fast gating variables to their quasi steady state arguing that they
reach these values very fast and the dynamics of these gates are of minor importance.
In our case, we set the fast gating variable m = m∞(v). This kind of reduction can
be justified mathematically by a ‘center manifold reduction’. We will not show this
here but refer to [44] which showed such a reduction step rigorously for the m gate of
the Hodgkin-Huxley model. With that first reduction step, we reduced the number
of fast variables from two to one.

Step 2: Reduction of slow variables. This step is based on an observation in
the subthreshold regime. Figure 3.2 shows a time-trace of the ‘membrane potential’ v
(left) as well as the corresponding time-traces of the gates x, x = m,h, n, s, in system
(3.4). Note that the n-gate does not influence the subthreshold regime at all, i.e.
n ≈ 0 in this regime. This can be easily explained by looking at the quasi steady state
voltage functions x∞(v) of the gates x shown in Figure 3.1. The sigmoidal activation
function n∞(v), the quasi steady state of n (shown in yellow), is approximately zero
for v < −0.4 (V < −40mV ), the limit of the subthreshold regime. The time constant
τn(v) is of order 1ms. Therefore, after an action potential is fired and the cell is
repolarized to the subthreshold regime, n will reach its zero equilibrium value after a
few milliseconds and n plays thereafter no role in the creation of STOs. Since we are
primarly interested in the creation of the STOs in the MMO pattern it is reasonable
to set gk = 0, i.e. we block the Kv3.1 channel in the Erisir model. We expect to
find qualitative similar results (MMOs) without this channel, but note that the Kv3.1
channel has a profound role in repolarizing the cell and we will come back to this
point later.

With this second reduction step we reduced the number of slow variables from
three to two.
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Fig. 3.3. Bifurcation diagram of reduced Erisir model (3.5): for easier comparison with the
original model (2.1) we use the applied current Iapp as bifurcation parameter instead of its di-

mensionless counterpart Îapp. Similarly, we plot the phase variable V instead of its dimensionless
counterpart v. We observe a supercritical Hopf bifurcation for Iapp ≈ 0.62, a limit cycle loses
stability for Iapp ≈ 0.63 and we observe a saddle-node of limit cycles for Iapp ≈ 0.71.

3.3. MMOs in the reduced Erisir model. In the following we will focus on
the reduced Erisir model

h′ = (1/th(v))(h∞(v) − h) =: g1(v, h) ,
s′ = (1/ts(v))(s∞(v) − s) =: g2(v, s) ,

ε v′ = Îappl − (ÎNa + ÎK + ÎKs + ÎL) =: f(v, h, s) ,
(3.5)

which is a singularly perturbed system (slow/fast system) with two slow variables
(h, s) and one fast variable v. First we show that this model can produce similar
patterns as the full Erisir model. Figure 3.3 shows the bifurcation diagram which has
qualitatively the same structure as the bifurcation diagram of the full Erisir model
shown in Figure 2.1: the cell is excitable for Iapp < IHopf where IHopf ≈ 0.615
denotes a supercritical Hopf bifurcation. The corresponding limit cycle loses stability
at Iapp ≈ 0.625 which opens a parameter window up to Iapp = Isnlc ≈ 0.715 with
apparently no stable attractors. Isnlc denotes a saddle-node bifurcation of limit cycles.
For Iapp > Isnlc there exist large relaxation type oscillations. Note that we use Iapp

and not its dimensionless counterpart Îapp as bifurcation parameter. This allows us
to compare the bifurcation structure directly with the bifurcation structure of the
original model shown in Figure 2.1. Figure 3.4 shows time traces for several values of
applied current Iapp. Similar to the full Erisir model (2.1), MMOs show up as stable
solutions for the reduced Erisir model filling the gap of apparently no stable solutions
in Figure 3.3.

Note the qualitative differences between the full and the reduced Erisir model:
the cell in the reduced Erisir model does not repolarize as much as in the full model
(difference is approximately 15mV ). On the other hand, the cell depolarizes more in
the reduced model than in the full model (difference is approximatelty 10mV ). This
is explained by the Kv1.3 channel block which is responsible for the repolarization
phase of the cell. Note that the gap between the HB and the SNLC in the bifurcation
diagram of the reduced model, Figure 3.3, is just shifted slightly by ∆Iapp ≈ 0.03 to
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Fig. 3.4. Voltage time traces of reduced Erisir model (3.5): Upper/Left: small oscillatory pat-
tern 01 for Iapp = 0.62; Upper/Middle: MMO pattern 19 for Iapp = 0.635, Upper/Right: MMO
pattern 12 for Iapp = 0.67; Bottom/Left: MMO pattern 11 for Iapp = 0.69; Bottom/Right: relax-
ation oscillation pattern 10 for Iapp = 0.72. Note, we plot V instead of its dimensionless counterpart
v.

the left compared to the full model, Figure 2.1. This is (mainly) because the hyperpo-
larizing outward current IK is very weak in the subthreshold regime (approximately
zero) and has no influence on the STOs as explained in the reduction of the slow vari-
ables. In summary, it appears that the reduced Erisir model (3.5) covers qualitatively
the behaviour of the full Erisir model (2.1), at least close to the parameter regime
where we observe MMOs.

3.4. Canard analysis of reduced Erisir model. Here we explain the observed
MMOs via the generalized canard phenomenon [7, 44, 49]. The canard theory applies
to singular perturbation problems with two slow and one fast variables. The reduced
Erisir model (3.5) has to fulfill a set of assumptions such that this theory can be
applied, which we will show in the following.

We first focus on the limiting problem ε → 0 in system (3.5) which is called the
reduced problem. It describes the evolution of the slow variables (h, s) on the critical
manifold S := {(v, s, h) ∈ R

3 : f(v, s, h) = 0}, i.e., on the v-nullsurface. This critical
manifold S can be represented as a graph over, e.g., (s, v)-space given by

h(s, v) =
Îapp − ĝkss

4(v − Êk) − ĝL(v − ÊL)

m3
∞

(v)(v − ÊNa)
. (3.6)

The following assumption on the critical manifold S holds:

Assumption 1. System (3.5) possesses (locally) in the subthreshold regime a
folded critical manifold.

Figure 3.5 (middle) shows the critical manifold for Iapp = 0.65 and it is indeed
folded. This is true for all Iapp parameter values within the observed MMO regime
(and beyond).

If we rescale to the fast time τ = t/ε in system (3.5) and take the singular limit
ε → 0, then we obtain the one-dimensional layer problem which describes the fast
dynamics away from the critical manifold S. Trajectories of the layer problem evolve
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along fast fibers, i.e. one dimensional sets (h = const, s = const, v), and the critical
manifold S is a manifold of equilibria. The folded structure of S implies saddle-node
bifurcations of equilibria within the layer problem along the fold-curve L. Therefore,
we can describe the critical manifold as the union of subsets S = Sa ∪ L ∪ Sr where
Sa denotes the attracting (stable) branch of S, i.e. fv < 0 on Sa, and Sr denotes
the repelling branch of S, i.e. fv > 0 on Sr. The fold-curve L is defined by fv = 0.
Therefore, the layer flow is towards Sa respectively away from Sr along fast fibers.

To understand the reduced flow on the critical manifold S, we project the limiting
system ε → 0 of (3.5) onto (s, v)-space. This projection can be obtained from implicit
differentiation of f(h, s, v) = 0 and the equation for ṡ which gives

ṡ = g2

−fv v̇ = fhg1 + fsg2
(3.7)

evaluated along h = h(s, v). Note that this is a natural choice for projection since
S is given as a graph over (s, v)-space in (3.6). System (3.7) is singular along the
fold-curve L given by fv = 0. We therefore rescale time by the factor −fv to obtain
the desingularized reduced flow

s′ = −fvg2

v′ = fhg1 + fsg2
(3.8)

where ‘prime’ denotes differentation with respect to the new time t1 = t/(−fv). We
obtain the phase portait of the reduced system (3.7) by reversing the orientation of the
trajectories of the desingularized system (3.8) on the repelling branch Sr, otherwise
the two phase portraits are equivalent. System (3.8) has two types of singularities,
regular and folded. Regular singularities are given by g1 = g2 = 0. They correspond
to equilibria of the reduced flow (3.7) away from the fold-curve. In contrast, folded
singularities are given by fv = 0 (the fold-curve condition) and fhg1 + fsg2 = 0
which defines isolated points on the fold-curve. In general, such folded singularities
are not equilibria of the reduced system (3.7). However, folded singularities give the
opportunity for the reduced flow to cross from Sa to Sr via folded singularities in finite
time. Depending on the classification as singularities of (3.8), folded singularities are
called folded saddles, folded saddle-nodes, folded nodes or folded foci.

Assumption 2. System (3.7) possesses a folded node (folded saddle-node) singu-
larity for 0.55 < Iapp < 0.74.

Figure 3.6 shows the reduced flow in the silent phase (V < −40mV ) for several
values of applied current Iapp. The lower orange curve represents the fold-curve L of
the critical manifold. For Iapp < 0.55, there exists a node on the attracting branch
Sa and a folded saddle (not shown). For Iapp = IfsnII ≈ 0.55, we observe a folded
saddle-node (type II), the intersection of the green nullcline and the lower orange fold-
curve, and a folded saddle, another intersection of the green nullcline and lower orange
fold-curve (can be seen in e.g. Figure 3.6, Iapp = 0.63). For Iapp > IfsnII , the folded
saddle-node (type II) splits then into a folded node and a saddle (see e.g. Figure 3.6,
Iapp = 0.63). Therefore, a folded saddle-node (type II) corresponds to a transcritical
bifurcation of a folded and a regular singularity. For Iapp = IfsnI ≈ 0.74 we observe
another folded saddle-node (type I) bifurcation, i.e. the folded node (left) and the
folded saddle (right) annihilate each other (transition in Figure 3.6 from Iapp = 0.73
to Iapp = 0.80). Therefore, a folded saddle-node (type I) is a saddle-node bifurcation
of folded singularities which explains the difference between the two sub-types. For
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Fig. 3.6. The reduced flow (3.7) of system (3.5). Note, we plot V instead of its dimensionless
counterpart v. Applied current Iapp is shown above each panel. Red curves are the singular orbit
(SO; computed by solving system (3.5) with C = 10−8, equivalent to very small ǫ ≈ 10−8); green
curve is the V -nullcline; orange curves are the ns-nullclines (note the lower part, the fold-curve
labeled F defined by fv = 0, is not a true nullcline but its intersections with the green curve determine
the folded nodes). Black curves (either alone or leftmost) represent the primary strong canard and
rightmost black curves are the stable manifolds of the folded saddle. The sector on Sa (below the
fold-curve F) bounded by the two black curves (the strong canard of the folded node and the canard
of the folded saddle) is called the funnel. When the SO lies within the funnel, there will be MMOs
for sufficiently small values of ǫ according to the theorem.

Iapp > IfsnI there just exists the ordinary saddle on the repelling branch Sr (the
intersection of the green curve with the upper orange curve, not shown). Hence,
Assumption 2 is fulfilled for IfsnII < Iapp < IfsnI as stated.

Note that a folded node creates a singular funnel on Sa, i.e. there exists a sector
of solutions of the reduced flow (3.7) which is ‘funneled’ from Sa through the folded
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node to Sr. In Figure 3.6, the singular funnel is the area between the fold curve
(lower orange curve) and the two black curves, the primary strong canard of the
folded node and the canard of the folded saddle. Identifying this funnel region is
essential since solutions of system (3.5) which pass through this funnel region will
create STOs. Finally, we have to construct singular periodic orbits, concatenated
by trajectory segments of both the reduced and the layer problem which explain the
observed MMO patterns in (3.5).

Assumption 3. System (3.5) possesses for 0.55 < Iapp < 0.69 a singular periodic
orbit which consists of a segment on the stable folded surface Sa within the singular
funnel of the folded node singularity as an endpoint.

Such a singular periodic orbit (SO) is illustrated in Figure 3.5. The main step
to find these SOs is to show that the return mechanism projects the fast fiber of
the folded node back into the funnel region (see Figure 3.5). We do not calculate
this singular periodic orbits explicitly, but approximate them by calculating periodic
orbits in system (3.5) with very small ε ≈ 10−8. In the singular limit ε → 0 these
periodic orbits will become the singular periodic orbits described in Assumption 3.
Several examples of SOs are shown in Figure 3.6. The funnel of the folded node
becomes obviously smaller with increasing Iapp and disappears for Iapp = IfsnI (the
folded saddle-node type I). The global return mechanism projects the fast fiber of the
folded node only for 0.55 < Iapp < Irel ≈ 0.69 into the funnel as shown in Figure 3.6.
Therefore, Assumption 3 is only fulfilled for IfsnII < Iapp < Irel. For Iapp ≈ 0.68 the
return mechanism projects onto the border of the funnel, the strong canard of the
folded node which represents the separatrix in the phase space for different oscillatory
behaviour, i.e. between MMOs and relaxation oscillations. It was shown in [7] that
if a singularly perturbed system fulfills Assumptions 1-3 then it possesses 1s MMO
patterns for sufficiently small ε. We conclude:

Proposition 3.1. System (3.5) possesses MMO type periodic solutions based on
the canard phenomenon for sufficiently small ε ≪ 1.

Note that by Assumptions 2 and 3 we expect to find MMOs for IfsnII ≈ 0.55 <
Iapp < Irel ≈ 0.69. Obviously, the boundaries of this prediction are sensitive to the
size of the singular perturbation parameter ε ≪ 1. For example, the bifurcation
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diagram of system (3.5), Figure 3.3, is calculated for ε ≈ 10−2. We observe MMO
patterns for IHopf ≈ 0.615 < Iapp < Isnlc ≈ 0.715. There is a marked shift in the
onset of MMOs compared to the prediction IfsnII = 0.55. If we decrease the value of
ε towards zero then IHopf converges to IfsnII , i.e. a folded saddle-node (type II) is the
singular limit representation of the Hopf bifurcation shown in Figure 3.3. Note further
that a stable node on Sa crosses the fold-curve L at IfsnII to become a (unstable)
saddle on Sr. These equilibria (saddle and node) persist under small pertubations ε
and are therefore also equilibria of (3.5). Recall the transcritical bifurcation of a folded
and an ordinary singularity at IfsnII ≈ 0.55. These stable and unstable equilibria
correspond to the branch of equilibria in the bifurcation diagram, Figure 3.3, where
stability is lost via a Hopf bifurcation. This again emphasizes the relation between
the folded saddle-node (type II) and the Hopf bifurcation. The smaller the singular
perturbation ε, the closer the onset of MMOs to IfsnII ≈ 0.55.

To obtain MMO patterns it is essential that Assumption 3 is fulfilled as well. The
return mechanism has to project within the funnel, otherwise we will only observe
relaxation oscillations but not MMOs. Therefore, the global return mechanism ulti-
mately determines the Iapp interval where MMOs are observed. In Figure 3.3, the
upper limit Isnlc is the parameter value where the return mechanism of system (3.5)
with ε ≈ 10−2 projects onto the border of the funnel. Again, if we decrease ε towards
zero then Isnlc approaches Irel as predicted by the singular limit theory. Note that
ε has an increasing effect on the MMO range at the upper limit Isnlc while it has a
decreasing effect on the MMO range at the lower limit IHopf .

We can also give a qualitative prediction on the number of STOs within the
MMO pattern, the larger Iapp the smaller the number of STOs. Canard theory [49]
predicts an upper limit on the number of STOs, s∗ = [(µ + 1)/(2µ)] (the largest
integer less than or equal (µ + 1)/(2µ)), based on the eigenvalue ratio µ = λ1/λ2 < 1
of the folded node singularity in system (3.8). This number decreases with increasing
applied current2 for IfsnII ≈ 0.55 < Iapp < Irel ≈ 0.69. Furthermore, the return
mechanism projects the trajectory closer to the strong canard for increased Iapp. The
number of STOs is smaller than the predicted maximal number s∗ whenever the return
mechanism projects the trajectory O(ε(1−µ)/2) close to the strong canard. In the limit
Iapp = Irel, i.e. the switch from MMOs to relaxation oscillations, the number s∗ of
STOs becomes zero. This explains the decreased number of STOs within an MMO
pattern for increased Iapp shown in Figure 3.4 and Figure 3.7.

We want to point out that the canard theory developed in [7, 49] cannot fully
explain the transition from STOs to MMOs near a folded saddle-node (Iapp = IfsnII).
Note that the limit µ → 0 predicts infinitely many STOs, i.e. a transition from STOs
to MMOs. As pointed out in our analysis, the onset of STOs is associated with a
Hopf bifurcation which in the singular limit corresponds to a folded saddle-node (type
II). In [35], a rigorous blow-up analysis of a folded saddle-node type II singularity is
presented which shows how two phenomena, canards and a singular Hopf bifurcation,
lead to complicated dynamics including STOs and MMOs. In [25], it is shown how
one determines the type of the Hopf bifurcation associated with a folded saddle-node
type II singularity (super– or subcritical). It also shows numerical results on nearby
bifurcation structures such as period doubling and torus bifurcation. Other work on
folded saddle-nodes can be found in [39, 34].

2The eigenvalue ratio µ = λ1/λ2 < 1 is not a monotone function of Iapp. The value µ reaches
its maximum (µ̂ ≈ 0.27) for 0.69 < Iµ̂ < 0.7. It increases from zero to µ̂ for IfsnII < Iapp < Iµ̂ and
decreases from µ̂ to zero for Iµ̂ < Iapp < IfsnI .
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4. Weak coupling of the Erisir model. We now use weak coupling theory
[14] to try to understand how the presense of the canards produces the ability of
networks to form clusters. Briefly, weak coupling theory or averaging allows one to
reduce systems of N coupled oscillators to sets of differential equations on an N−torus.
Consider a coupled pair:

X ′

1 = F (X1) + ǫ1G1(X1,X2)

X ′

2 = F (X2) + ǫ1G2(X1,X2)

where X ′ = F (X) has a stable limit cycle U(t) and ǫ1 is small and positive. Here ǫ1 is
used to denote the coupling strength with the subscript 1 to distinguish it from the ǫ
used to characterize the difference in time-scales in the previous section. In order for
averaging and weak coupling theory to be applied, one generally has to assume that
ǫ1 ≪ ǫ. That is the coupling is “smaller” than any of the other rates characterizing
the uncoupled dynamics. If this assumption holds, then the method of weak coupling
allows us to conclude that for ǫ1 sufficiently small, Xj(t) = U(θj(t)) + O(ǫ1) and

θ1 = 1 + ǫ1H1(θ2 − θ1) + o(ǫ1)

θ2 = 1 + ǫ1H2(θ1 − θ2) + o(ǫ1)

where

Hj(φ) =
1

T

∫ T

0

U∗(t) · Gj(U(t), U(t + φ)) dt.

Here T is the period of the limit cycle and U∗(t) is the unique periodic solution to
the linear adjoint problem:

Y ′ = −DXF (U(t))T Y, Y (t) · U ′(t) = 1.

For our model, coupling is only through the voltage of the membrane, so that

H(φ) =
1

T

∫ T

0

V ∗(t)(V (t + φ) − V (t)) dt. (4.1)

V ∗(t) is the voltage component of the adjoint and is proportional to the phase-
resetting curve obtained by applying brief small current perturbations to the neuron
(see [29]). V (t) is the voltage trace. We note that for gap junctions, H(0) = 0. Phase
models enable us to predict the possible stable phase-locked patterns when two or
more oscillators are coupled. For a pair of identical oscillators, we can write a single
scalar equation for the phase-difference, φ := θ2 − θ1 :

φ′ = ǫ1[H(−φ) − H(φ)] = −2ǫ1Hodd(φ).

Thus, the zeros of the odd part of H are the possible phase-differences and a phase
difference of φ̄ is stable if H ′(φ̄) > 0.

The generalization of the above theory to N oscillators is clear. In particular, for
all:all coupling with identical oscillators, we obtain the following model for the phases:

θ′i = 1 + ǫ1
1

N

N∑
j=1

H(θj − θi). (4.2)
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A clustered solution for this system is a partition of N , that is a collection of positive
integers whose sum is N , say, k1, . . . , km such that there are m distinct phases and
kl oscillators which are all synchronized in each group. For example, a two-cluster
solution would have n oscillators with 0 relative phase and N − n oscillators with
φ̄ relative phase. The existence of m−clustered states requires solving m equations.
Stability of these clustered states is far more difficult to determine and has been done
in general only for the m = 2 case and for m > 2 for certain symmetric cases [28, 26, 1].

For very large N , one technique that is very useful was developed by Kuramoto
[36]. He considers globally connected identical oscillators which are driven by uncor-
related noise. For large enough noise, the density of the phases for the noisy system as
N → ∞ is uniform (the asynchronous state). He performs a stability analysis on this
state as the amplitude of the noise decreases and under some conditions, the asyn-
chronous state loses stability to a symmetric clustered state. Which state emerges
from the noise is very easy to determine. Let an denote the Fourier sine coefficients of
H(φ). Then an m-cluster will bifurcate from the asynchronous state when the noise
falls below am/m. Thus, we need only look at the biggest am/m to predict which
clusters should emerge, as the noise is reduced. While this will not pick out all the
attractors, we can think of it as the analogue of simulated annealing in the hopes that
the most attractive state is chosen.

Thus, in the remainder of this section, we will look at the H function for the
Erisir model and then try to understand why it looks like it does by considering the
subthreshold behavior.

4.1. Phase models for the Erisir model. Using the theory outlined above,
the main determinant of the behavior is the function H(φ) which gives (i) the possible
stable pairwise phase-differences and (ii) the form of the most stable cluster formation
in the presence of noise.

Figure 4.1 shows the behavior of a phase model of the form (4.2) where H is as
defined in equation (4.1) for the Erisir model with different values of Iapp. The initial
phase are randomly taken from a uniform distribution. In the leftmost panel, the
phases organize into a three cluster solution as in the full model shown in Figure 2.4,
Iapp = 0.7. The two graphs below show the interaction function H along with the
adjoint, V ∗. It is clear that H contains many higher order Fourier modes and, in fact,
the maximum of am/m occurs at m = 3, so that the three cluster solution is predicted
to be the most stable one. As the current is increased and the system moves closer
to the usual repetitive firing regime, the number of clusters drops to two (Iapp = 0.8)
and then to one (Iapp = 0.9) which is the synchronous solution. The Fourier analysis
of H for Iapp = 0.8 shows that a2/2 is maximal so that two-clusters are predicted to
emerge from the asynchronous solution. Similarly, the dominant Fourier sine model
is m = 1 for Iapp = 0.9 so that there will only be synchrony.

We note that for the three cluster case, that H is close to the mirror image of
V ∗. The reason for this can be seen by looking at the definition of H, (4.1). The H
function is the convolution of the voltage trace with the adjoint. However, for the
long-periodic oscillations associated with clustering, the voltage trace looks very close
to a Dirac delta function, so that a rough approximation of H is

H(φ) ≈
1

T

∫ T

0

V ∗(t)[δ(t + φ) − δ(t)] dt = V ∗(−φ) − V ∗(0) (4.3)

which is just the mirror image of V ∗(t). This suggests that the key to understanding
clustering lies in the adjoint (PRC) rather than the voltage trace. This notion is
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Fig. 4.1. Behavior of the phase-reduction of the Erisir model for 50 coupled oscillators. Each
column shows the phases of each oscillator with time running downward and oscillator index across.
The function H(φ) is then shown and the adjoint, V ∗(φ) is at the bottom. Applied current Iapp

from left to right is 0.7, 0.8, and 0.9 µA/cm2. Fourier analysis of H predicts three, two, and one
cluster solutions respectively.

borne out by looking at Figure 4.2, in which we use the shape of the adjoint for
Iapp = 0.675 (many subthreshold oscillations in V and many oscillations in V ∗(t))
and for the same current but with gKs turned off (no subthreshold oscillations and a
simple bimodal V ∗(t).) We compute four different versions of H using all combinations
of the complex/simple adjoint and the complex/simple voltage trace. As the figure
illustrates in curves 1 and 2, the complex adjoint combined with either of the two
voltage traces leads to a highly oscillatory function H while the simple adjoint yields
relatively simple functions H. Thus, the numerics here and the approximation (4.3)
provide strong evidence that the multiple oscillations in the interaction function, H
are due to the complexity of the adjont/PRC, V ∗(t) and not to the waveform of the
membrane potential.

If we recall that the adjoint is very closely related to the phase response curve
(PRC), then we can exploit this to understand the role of the canard structure and
subthreshold oscillations in shaping the PRC. Figure 4.3 shows a blowup of the sub-
threshold region in the V − ns phase plane. The unperturbed period is 234 msec.
Two different brief (0.1 msec) pulses are delivered at either 70 msec or 90 msec after
the neuron spikes. The 70 msec pulse results in a delay of the next spike by 45 msec
while the 70 msec pulses causes the spike to occur 42 msec earlier. The mechanism for
this difference is clear from the figure. The earlier pulse makes the neuron undergo an
additional oscillation (red loop in the center) while the later pulse causes the neuron
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Fig. 4.3. Explanation for the complexity of the PRC (adjoint). Small differences in the timing
of brief input have magnified effects near the subthreshold dynamics. Here (Iapp = 0.675 and the
period is about 234 msec. A current pulse lasting 0.1 msec with amplitude 0.25 µA/cm2 is delivered
at t = 70 (red curve) and t = 90 (blue curve msec after the spike. Black curve is unperturbed
trajectory.

to skip a pulse. Thus, the presence of the subthreshold oscillations leads to sensitivity
to the timing of small pulses and a PRC which has multiple advances and delays
during the cycle.

Finally, we note that the same behavior is found in the reduced (three-variable
model). Figure 4.4 shows the adjoint and the interaction function for the reduced
model when Iapp = 0.65 which is in the region where there is a folded canard structure.
Compare this adjoint/H function with that in Figure 4.1 on the left. They are clearly
quite close in qualitatve shape. Thus, the reduction has little effect on the phase
dynamics.
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5. Conclusion. In this paper, we have explored the interactions between local
dynamics and coupling of neural oscillators. Our choice of coupling, electrical, is
motivated by the preponderance of such connections between inhibitory interneurons
in the brain (particularly, the cortex). Electrical coupling is also the simplest form of
coupling and does not introduce the additional complexities of synaptic coupling which
involve a variety of time-scales and the kinds of synapses (inhibitory or excitatory).
The model used in the present paper has been used by other authors in order to
study the synchronization properties of inhibitory neurons. The novel aspect of the
biophysical model is that it contains a slow potassium channel which enables the
voltage to undergo mixed-mode oscillations (MMOs). This mixture of spikes and
subthreshold oscillations makes the neuron very sensitive to inputs and leads to a
complex phase-resetting curve (PRC). This complex PRC provides the mechanism
for multiple clustering in networks of these neurons. There have been few other
studies of the interactions between MMOs and coupling. [2] found clustering with
strong coupling in a chemical model. In their paper, the main tools were fast slow
analysis; weak coupling and phase methods were not applied. [30] looks at weak
coupling between elliptic bursters (which are related to MMOs, cf [12]). He is only
interested in spike versus burst synchrony and does not relate the dynamics to the
interaction function.

Biologically, this work provides a novel contribution to the analysis of the effects
of slow currents on dynamics and coupling. There have been a number of papers
which show that slow currents and other intrinsic currents have profound effects on
synchronization [41, 27, 16, 21], however, all these illustrated transitions between
synchrony and “anti-phase” oscillations. Furthermore, while the effects were often
shown to be a consequence of changing the shape of the PRC, these shape changes
were subtle. In the present paper, the slow potassium current IKs has a profound effect
and produces MMOs which, in turn, result in a very complex PRC. Rotstein et al.
[43] identified a slow h-current Ih in an entorhinal cortex layer II stellate cell model
mainly responsible for observed MMOs and showed that the canard phenomenon
explains these MMOs as well. They also pointed out the effect of MMOs on the PRC.

Strong coupling destroys the clustering ability of these networks (results not
shown) and this can be understood by also noting that strong pulses do not have
the same subtle effects on the PRC as do weak pulses. Thus, the results described
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here require “weak” coupling. We point out that the coupling conductance is about
10% of the slow potassium conductance. Finally, we remark that similar results are
found with weak inhibitory synaptic coupling as long as the synapse are short-lasting.

Acknowledgments. BE thanks the National Science Foundation for partial sup-
port on this project. Both authors would also like to thank Steve Coombes, Andre
Longtin, and Jon Rubin for organizing the conference where this work was conceived.

Appendix A. Functions and parameters of Erisir model (2.1).
The biophysical model has the form:

C V ′ = Iapp − gL(V − EL) − gNam3h(V − ENa) − gKn2(V − EK) − gKss
4(V − eK)

m′ = am(V )(1 − m) − bm(V )m

h′ = ah(V )(1 − h) − bh(V )h

n′ = an(V )(1 − n) − bn(V )n

s′ = as(V )(1 − s) − bs(V )s.

where:

am(V ) = 40(75 − V )/(exp((75 − V )/13.5) − 1)

bm(V ) = 1.2262 exp(−V/42.248)

ah(V ) = 0.0035 exp(−V/24.186)

bh(V ) = 0.017(−51.25 − V )/(exp(−(51.25 + V )/5.2) − 1)

an(V ) = (95 − V )/(exp((95 − V )/11.8) − 1)

bn(V ) = 0.025 exp(−V/22.22)

as(V ) = −(0.616 + 0.014V )/(exp(−(44 + V )/2.3) − 1)

bs(V ) = 0.0043 exp(−(44 + V )/34)

The kinetics of these variables are exactly as published in [38]. We have made some
small changes to the conductances (in particular, our leak, gL is somewhat larger).
The current Iapp is varied as is the slow conductance, gKS . Unless otherwise indicated,
the default values are EK = −97, ENa = 55, EL = −70 (all in mV ), C = 0.1µF/cm2,
gL = 0.041, gK = 18, gNa = 9 and gKs = 0.018 (all in µS/cm2).

In the network model, 50 such cells are coupled together via global coupling:

Icoup =
ggap

50

50∑
j=1

(Vj − Vi)

which is added to the right-hand side of the voltage equation for each oscillator.
In simulations with noise, a normally distributed random variable is added to each
voltage equation.
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