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Bifurcation mechanisms involved in the generation of action potentials (spikes) by neurons
are reviewed here. We show how the type of bifurcation determines the neuro-computational
properties of the cells. For example, when the rest state is near a saddle-node bifurcation, the
cell can fire all-or-none spikes with an arbitrary low frequency, it has a well-defined threshold
manifold, and it acts as an integrator ; i.e. the higher the frequency of incoming pulses, the
sooner it fires. In contrast, when the rest state is near an Andronov–Hopf bifurcation, the cell
fires in a certain frequency range, its spikes are not all-or-none, it does not have a well-defined
threshold manifold, it can fire in response to an inhibitory pulse, and it acts as a resonator ;
i.e. it responds preferentially to a certain (resonant) frequency of the input. Increasing the
input frequency may actually delay or terminate its firing.

We also describe the phenomenon of neural bursting, and we use geometric bifurcation
theory to extend the existing classification of bursters, including many new types. We discuss
how the type of burster defines its neuro-computational properties, and we show that different
bursters can interact, synchronize and process information differently.

1. Introduction

1.1. Neurons

The brain is made up of many types of cells, in-
cluding neurons, neuroglia, and Schwann cells. The
latter two types make up almost one-half of brain’s
volume, but neurons are believed to be the key ele-
ments in signal processing.

There are as many as 1011 neurons in the hu-
man brain, and each can have more than 10, 000
synaptic connections with other neurons. Neurons
are slow, unreliable analog units, yet working to-
gether they carry out highly sophisticated compu-
tations in cognition and control.

Action potentials play a crucial role among the
many mechanisms for communication between neu-
rons. They are abrupt changes in the electrical po-
tential across a cell’s membrane, see Fig. 1, and
they can propagate in essentially constant shape

away from the cell body along axons and toward
synaptic connections with other cells.

The problems of propagation and transmission
of neuronal signals are described elsewhere (see
e.g. [Shepherd, 1983; Johnston & Wu, 1995]). In
this paper, we discuss mathematical aspects of the
generation of action potentials.

1.2. Why spiking?

There is a common belief that action potentials are
generated only by neurons and solely for the pur-
pose of communication. However, many kinds of
cells are known to generate voltage spikes across
their cell membranes, including cells from the
pumpkin stem, tadpole skin, and annelid eggs.
Also, action potentials play certain roles in cell
division, fertilization, morphogenesis, secretion of
hormones, ion transfer, cell volume control, etc.
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Fig. 1. Examples of neural excitability, periodic spiking and bursting. (Shown are simulations of the Morris–Lecar [1981]
model. A slow subsystem is added to obtain the bursting solution.)

[Shepherd, 1981, 1983], and might be irrelevant
to cell–cell signaling. Nonetheless, our major goal
in this tutorial paper is to review various spiking
mechanisms in the context of neural signaling and
information processing.

1.3. Ionic mechanisms

Action potentials are generated and sustained by
ionic currents through the cell membrane. The ions
most involved are sodium, Na+, calcium, Ca++, and
potassium, K+. In the simplest case an increase
in the membrane potential activates (opens) Na+

and/or Ca++ channels, resulting in rapid inflow of
the ions and further increase in the membrane po-
tential. Such positive feedback leads to sudden and
abrupt growth of the potential. This triggers a rela-
tively slower process of inactivation (closing) of the
channels and/or activation of K+ channels, which
leads to increased K+ current and eventually re-
duces the membrane potential. These simplified
positive and negative feedback mechanisms are re-
sponsible for the generation of action potentials.

There are more than a dozen of various ionic
currents having divers activation and inactiva-
tion dynamics and occurring on disparate time
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scales [Llinas, 1988]. Almost any combination of
them could result in interesting nonlinear behav-
ior, such as neural excitability. Therefore, there
could be thousands of different biophysically de-
tailed conductance-based models. Neither of them
is completely right or wrong.

1.4. Dynamical mechanisms

In this paper we view neurons from the perspec-
tive of dynamical systems, and we use geometrical
methods to illustrate possible bifurcations and their
role in the computational properties of neurons.

We say that a neuron is quiescent if its mem-
brane potential is at rest or it exhibits small am-
plitude (“subthreshold”) oscillations. In dynamical
system terminology this corresponds to the system

residing at an equilibrium or a small amplitude limit
cycle attractor, respectively. A neuron is said to be
excitable if a small perturbation away from a qui-
escent state can result in a large excursion of its
potential before returning to quiescence. We will
show that such large excursions exist because the
quiescent state is near a bifurcation.

The neuron can fire spikes periodically when
there is a large amplitude limit cycle attractor,
which may coexist with the quiescent state. We
also discuss briefly quasiperiodic and chaotic firing.

1.5. Excitability

The type of bifurcation the quiescent state ex-
periences (Figs. 7, 29 and 30) determines the
excitable properties of a cell, and hence its

Table 1. A summary of relevant codimension 1 bifurcations of quiescent state. Parameter λ measures the distance
to the bifurcation.

Bifurcation of Initial Spiking Subthreshold Reference

Rest State Behavior Frequency Amplitude Operation Oscillations Figures

Fold bi-stable nonzero fixed integrator irrelevant 7, 9, 21

Saddle–node on
Invariant Circle excitable zero (

√
λ) fixed integrator irrelevant 7, 8, 9, 11

Supercritical Hopf excitable nonzero zero (
√
λ) resonator damped 7

Subcritical Hopf bi-stable nonzero arbitrary resonator damped 7, 16

Bifurcation of Subthreshold
Subthreshold Oscillation
Oscillation Frequency

Fold integrator 35

Limit Cycle bi-stable nonzero arbitrary resonator nonzero 29, 31

Saddle bi-stable
Homoclinic Orbit excitable nonzero fixed resonator zero (1/|ln λ|) 29, 31, 34

Saddle–Focus bi-stable
Homoclinic Orbit excitable nonzero fixed resonator zero (1/|ln λ|) 30

Focus–Focus bi-stable
Homoclinic Orbit excitable nonzero fixed resonator zero (1/|ln λ|)

Subcritical integrator

Flip bi-stable nonzero arbitrary resonator nonzero 30

Subcritical
Neimark–Sacker bi-stable nonzero arbitrary resonator nonzero 30

Blue-sky Catastrophe excitable zero (
√
λ) fixed integrator nonzero 30

Fold Limit Cycle

on Homoclinic Torus excitable zero (
√
λ) fixed integrator nonzero 30
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neuro-computational attributes. For example,

• When the rest state is near a saddle–node on in-
variant circle bifurcation, the neuron can fire all-
or-none spikes with an arbitrary low frequency,
it has a well-defined threshold manifold, it can
distinguish between excitatory and inhibitory in-
put, and it acts as an integrator ; i.e. the higher
the frequency of incoming spikes, the sooner it
fires.
• When the rest state is near an Andronov–Hopf bi-

furcation, the neuron fires in a certain frequency
range, it does not have all-or-none spikes, it does
not have a well-defined threshold manifold, it can
fire in response to an inhibitory pulse, and it acts
as a resonator ; i.e. it responds preferentially to
a certain (resonant) frequency of the input. In-
creasing the input frequency may actually delay
or terminate its firing.

We discuss neural excitability in Sec. 2 and
summarize some basic results in Table 1.

1.6. Periodic spiking

Neuro-computational properties of cells also depend
on bifurcations of large amplitude limit cycles corre-
sponding to periodic spiking. In general, such bifur-
cations differ from bifurcations of quiescent states:
For example, when the limit cycle is about to disap-
pear via a saddle homoclinic orbit, a fold limit cycle
bifurcation, or it loses stability through a subcrit-
ical flip or Neimark–Sacker bifurcation, it coexists
with a stable quiescent state. Hence a weak per-
turbation having appropriate timing can shut down
periodic spiking prematurely. We discuss these and
other issues in Sec. 3 and summarize some major
results in Table 2.

1.7. Bursting

When neuron activity alternates between a quies-
cent state and repetitive spiking, the neuron activ-
ity is said to be bursting ; see Fig. 1. It is usually
caused by a slow voltage- or calcium-dependent pro-
cess that can modulate fast spiking activity. There

Table 2. A summary of relevant codimension 1 bifurcations of large amplitude spiking. Parameter λ measures
the distance to the bifurcation.

Bifurcation of
Terminating Spiking

Periodic Firing Behavior Frequency Amplitude Locking

Saddle–node on Invariant Circle excitable zero (
√
λ) fixed difficult

Supercritical Hopf excitable nonzero zero (
√
λ) easy

Fold Limit Cycle bi-stable nonzero arbitrary easy

Saddle Homoclinic Orbit bi-stable zero (1/|ln λ|) fixed easy (?)

Saddle–Focus Homoclinic Orbit bi-stable zero (1/|ln λ|) fixed easy (?)

Focus–Focus Homoclinic Orbit bi-stable zero (1/|ln λ|) fixed easy (?)

Subcritical Flip bi-stable nonzero arbitrary easy

Subcritical Neimark–Sacker bi-stable nonzero arbitrary easy

Blue-sky excitable zero (
√
λ) fixed difficult

Bifurcation of
Quasi-periodic

Firing

Fold Limit Cycle on

Homoclinic Torus excitable zero (
√
λ) fixed difficult
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Fig. 2. Two important bifurcations associated with
bursting.

are two important bifurcations (see Fig. 2) associ-
ated with bursting:

• Bifurcation of a quiescent state that leads to
repetitive spiking; see left column in Table 3.
• Bifurcation of a spiking attractor that leads to

quiescence; see top row in Table 3.

We restrict our consideration to bifurcations of
codimension 1, since they are the most probable
to be encountered in nature.

We refer to a burster as being a point–cycle
when the quiescent state is an equilibrium point and
the spiking state is a limit cycle. When the quies-
cent state is a small amplitude (subthreshold) oscil-
lation, then the burster is said to be cycle–cycle.

We refer to a burster as being planar when
the fast spiking subsystem is two-dimensional.
This imposes severe restriction on possible bifurca-
tions. Table 3 summarizes 24 planar codimension 1

bursters. We name them after the two bifurcations
involved. Among them are 16 point–cycle and 8
cycle–cycle bursters, which are in the upper and
lower parts of the table, respectively. We discuss
them in detail in Sec. 4.

A complete classification of all 16 planar point–
cycle bursters, though without the naming scheme,
was first provided by Hoppensteadt and Izhikevich
[1997, Sec. 2.9]. Among them were the well-known

• “Fold/homoclinic” burster, also known as
“square-wave” or Type I burster.
• “Circle/circle” burster, also known as “parabolic”

or Type II burster.
• “SubHopf/fold cycle” burster, also known as “el-

liptic” or Type III burster.
• “Fold/fold cycle” burster, also known as Type IV

burster.
• “Fold/Hopf” burster, also known as “tapered” or

Type V burster.
• “Fold/circle” burster, also known as “triangular”

burster.

Many other bursting types listed in Table 3 are new.
We show in Sec. 4 that there could be many more
bursters if the fast subsystem is multidimensional.
They are classified in Table 4.

The history of formal classification of burst-
ing starts from the seminal paper by Rinzel [1987],
who contrasted the bifurcation mechanism of the
“square-wave”, “parabolic”, and “elliptic” bursters.
Then, Bertram et al. [1995] suggested to refer to

Table 3. A classification of codimension 1 planar fast–slow bursters. The upper (lower) part of the table corresponds
to point–cycle (cycle–cycle) bursters. See also Table 4 and Figs. 53 and 126.

Saddle–Node Saddle
on Invariant Homoclinic Supercritical

Bifurcations Circle Orbit Andronov–Hopf Fold Limit Cycle

Fold fold/circle fold/homoclinic fold/Hopf fold/fold cycle

Saddle–Node on circle/circle circle/homoclinic circle/Hopf circle/fold cycle

Invariant Circle

Supercritical Hopf/circle Hopf/homoclinic Hopf/Hopf Hopf/fold cycle

Andronov–Hopf

Subcritical subHopf/circle subHopf/homoclinic subHopf/Hopf subHopf/fold cycle

Andronov–Hopf

Fold Limit Cycle fold cycle/circle fold cycle/homoclinic fold cycle/Hopf fold cycle/fold cycle

Saddle Homoclinic homoclinic/circle homoclinic/homoclinic homoclinic/Hopf homoclinic/fold cycle

Orbit
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Fig. 3. Typical nullclines of planar neural systems. (Shown are nullclines for the Morris–Lecar [1981] model.)

the bursters using Roman numbers, and they added
a new, Type IV type. Another, “tapered” type
of bursting was studied simultaneously and inde-
pendently by Holden and Erneux [1993a, 1993b],
Smolen et al. [1993], and Pernarowski [1994]. Later
de Vries [1998] suggested to refer to it as Type V
burster. Yet another, “triangular” type of burst-
ing was studied by Rush and Rinzel [1994], mak-
ing the total number of identified bursters to be
6. Their bifurcation mechanisms are summarized in
Fig. 126.

There is a drastic difference between our ap-
proach to classification of bursting, and that of the
scientists mentioned above. They use a bottom–up
approach; that is, they consider biophysically plau-
sible conductance-based models describing experi-
mentally observable cellular behavior and then they
try to determine the type of bursting these models
exhibit. In contrast, we use the top–down approach:
We consider all possible pairs of codimension 1 bi-
furcations of rest and spiking states, which result
in different types of bursting, and then we invent a
conductance-based model exhibiting each bursting
type. Thus, many of our bursters are “theoretical”
in the sense that they have yet to be seen in exper-
iments. We return to this issue in Sec. 6.1.

1.8. Nullclines and phase
plane analysis

We keep our exposition of bifurcations in neuron
dynamics as general as possible. Although we use
biophysically detailed Hodgkin–Huxley type neural
models to illustrate many issues, most of our bi-
furcation diagrams and phase portraits are not re-
lated to any specific system of equations. Thus,
we emphasize the essentials and omit irrelevant
details.

Most of the bifurcations discussed here can be
illustrated using a two-dimensional (planar) system

of the form

µẋ = f(x, y)

ẏ = g(x, y) .

Much insight into the behavior of such systems can
be gained by considering their nullclines, i.e. the
sets determined by the conditions f(x, y) = 0 or
g(x, y) = 0; see Fig. 3. When 0 < µ � 1, null-
clines are called fast and slow, respectively. Since
the language of nullclines is universal in many areas
of applied mathematics, we depict them (as green
curves) in most illustrations.

1.9. The canonical model approach

Whenever possible, we use canonical models to
illustrate neuron dynamics. Briefly, a model is
canonical for a family of dynamical systems if every
member of the family can be transformed into the
model by a piecewise continuous possibly noninvert-
ible change of variables; see Fig. 4. The definition of
a canonical model generalizes the notions of topo-
logical normal form and versal unfolding, and it is
discussed in detail in Chapter 4 in [Hoppensteadt
& Izhikevich, 1997], where one can find many ex-
amples of canonical models for neuroscience.

The advantage of considering a canonical model
lies in its universality since the model provides in-
formation about behavior of the entire family. For
example, the canonical model (2) describes the dy-
namics of any Class 1 excitable neuron regardless of
the peculiarities of equations one chooses to model
its activity. That is, if one modifies equations and
adds more variables and parameters to take into
account more ions, currents, pumps, etc., but the
model still exhibits Class 1 excitability, then it still
can be converted into the canonical model (2) by
a (possibly different) change of variables. Thus,
taking into account more biological data does not
change the form of the canonical model (2), but
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Fig. 4. A model y′ = g(y) is canonical for the family of neural models, if each member of the family can be transformed into
y′ = g(y) by a piecewise continuous change of variables.

may only refine our knowledge of possible values of
the parameter r in the model.

2. Neural Excitability

Consider a system having a stable equilibrium that
is a global attractor. According to the intuitive def-
inition of excitability, small perturbations near the
equilibrium can cause large excursions for the solu-
tion before it returns to the equilibrium. In dynam-
ical system terminology this corresponds to a large-
amplitude trajectory that starts and ends near the
equilibrium; see Figs. 5 and 101. Such a trajectory
is referred to as being a periodic pseudo-orbit, and
the word “pseudo” is used to stress that the end
points x(t1) and x(t2) are near but not equal to each
other. If x(t1) = x(t2), then the word “pseudo”
should be dropped.

Thus, according to our definition, a dynami-
cal system having a stable equilibrium is excitable
if there is a large amplitude periodic pseudo-orbit
passing near the equilibrium, as in Fig. 5. How large
is “large” and how near is “near” depends on the
context. Such periodic pseudo-orbit exists because
the dynamical system is near a bifurcation. Indeed,
a small perturbation of the vector field can cause

the end points x(t1) and x(t2) to coalesce, thereby
creating a periodic orbit, which corresponds to
repetitive spiking. Thus, neurons are excitable be-
cause they are near a bifurcation (transition) from
quiescence to repetitive firing.

Now suppose the equilibrium is not a global at-
tractor, but has certain domain of attraction. Then
we say that the system is excitable if the bound-
ary of attraction is near the equilibrium. As in the
previous case, small perturbations near the equi-
librium can cause large excursions for the solution,
but the solution does not return to the equilibrium.
It is easy to see that such a neuron is also near a
bifurcation, because a small perturbation of the vec-
tor field can cause the equilibrium to approach its
boundary of attraction, resulting in loss of stability
or disappearance.

Hodgkin’s Classification of Excitability. A
simple but useful criterion for classifying excitabil-
ity was suggested by Hodgkin [1948]. He stimulated
a cell by applying currents of various strengths.
When the current is weak the cell is quiet. When
the current is strong enough, the cell starts to fire
repeatedly; see Fig. 6.
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Fig. 6. Transition from rest to repetitive spiking in two biophysical models when the strength of applied current, I, increases.
(Noise is added to the Hodgkin–Huxley system to reduce the slow passage effect.)

He divided neurons into two classes according
to the frequency of emerging firing:

• Class 1 neural excitability. Action potentials
can be generated with arbitrarily low frequency.
The frequency increases with increasing the ap-
plied current.
• Class 2 neural excitability. Action potentials

are generated in a certain frequency band that is
relatively insensitive to changes in the strength of
the applied current.

Class 1 excitable neurons fire at frequencies that
vary smoothly over a range of about 5–150 Hz. The
frequency band of the Class 2 excitable neurons is
usually in the range 75–150 Hz, but these bands
can vary from neuron to neuron. The exact num-

bers are not important to us here. The qualitative
distinction between Class 1 and Class 2 excitable
neurons is that the emerging oscillations have zero
frequency in the former and nonzero frequency in
the latter. This reflects different underlying bifur-
cation mechanisms.

Possible Bifurcations. The first attempt
to classify excitability using dynamical sys-
tems belongs to FitzHugh [1955], although he
did not use the bifurcation theory explicitly.
In what follows we use the approach sug-
gested by Rinzel and Ermentrout [1989] and
consider the strength of applied current in
Hodgkin’s experiments as being a quasistatic bi-
furcation parameter. When the current increases,
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Fig. 7. Codimension 1 bifurcations corresponding to a tran-
sition from equilibrium to oscillatory dynamics. Fold bifur-
cation occurs when the Jacobian matrix at the equilibrium
has a zero eigenvalue. We refer to it as the saddle–node on
invariant circle bifurcation when the center manifold makes
a loop. Andronov–Hopf bifurcation occurs when the matrix
has a pair of complex-conjugate eigenvalues with zero real
part; see [Hoppensteadt & Izhikevich, 1997] or [Kuznetsov,
1995] for complete definitions.

the rest potential increases until a bifurcation oc-
curs, resulting in loss of stability or disappearance of
the rest potential, and the neuron activity becomes
oscillatory. The bifurcation resulting in transition
from a quiescent to an oscillatory state determines
the class of neural excitability.

Since there is an infinite number of possible bi-
furcations of an equilibrium, we consider only bifur-
cations of codimension 1. Those corresponding to
transition from an equilibrium to a limit cycle are
summarized in Fig. 7.

We will see that

• Class 1 neural excitability is observed when a rest
potential disappears through a saddle–node bifur-
cation on an invariant circle.
• Class 2 neural excitability is observed when a rest

potential loses stability via an Andronov–Hopf
bifurcation.

Is it not amazing that there are only two differ-
ent dynamical (bifurcation) mechanisms for neu-
ral excitability despite the overwhelming number
of ionic mechanisms? Another amazing fact is
that Hodgkin’s classification was largely ignored
by the computational neuroscience community until
the seminal publication by Rinzel and Ermentrout
[1989].

The classification above is not perfect. For ex-
ample, the fold (off a stable limit cycle) bifurcation
can result in Class 1 or Class 2 excitability depend-
ing on the frequency of the existing limit cycle. If
the system is near a codimension 2 saddle–node sep-
aratrix loop bifurcation (see Fig. 21), then the limit
cycle is of low frequency. Similarly, the stable limit
cycle in the subcritical Andronov–Hopf bifurcation
may have low frequency when the system is near
a certain codimension 2 bifurcation, which would
appear to be Class 1 excitability. One may argue
that we should disregard these cases because they
have larger codimension and hence are not likely
to be encountered in nature. However, bifurcations
of codimension 2 do play important roles in neural
bursting, and evolution may have developed sepa-
rate physiological mechanisms to keep cell dynamics
near such bifurcations.

2.1. Class 1 excitable systems

Let us consider a saddle–node on invariant circle bi-
furcation, which always results in Class 1 excitabil-
ity with a typical periodic pseudo-orbit depicted
in Fig. 5. Such a bifurcation is exhibited by the
Wilson–Cowan model [Hoppensteadt & Izhikevich,
1997], the VCON model [Hoppensteadt, 1997], the
Morris–Lecar, Connor models [Ermentrout, 1996],
the Traub model [Traub & Miles, 1991], the Bower
model [Wilson & Bower, 1989], and many other bio-
physically detailed models. It is ubiquitous in two-
dimensional relaxation systems

µẋ = f(x, y)

ẏ = g(x, y)
x, y ∈ R , µ� 1 ,

having nullclines intersecting as shown in Fig. 8.
It is widely believed that the original Hodgkin–

Huxley [1952] model does not exhibit Class 1 ex-
citability unless the potassium A-current is added
[Connor & Stevens, 1971]. Rush and Rinzel [1995]
have shown recently that A-current is not necessary
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Fig. 8. Saddle–node on invariant circle bifurcation in two-dimensional relaxation systems (from [Hoppensteadt & Izhikevich,
1997].

for Class 1 excitability if the sodium and potassium
(in)activation curves in the Hodgkin–Huxley model
are shifted appropriately.

2.1.1. Threshold

Whenever a bifurcation involves a saddle, the sys-
tem has a well-defined threshold — the stable man-
ifold of the saddle [FitzHugh, 1955], which is of-
ten referred to as a separatrix since it separates
into two regions of the phase space having differ-
ent qualitative behavior. Indeed, small perturba-
tions of the solution that do not lead beyond the
separatrix in Fig. 9 decay, while those crossing it
grow away exponentially thereby producing a spike.
Such a system is said to have all-or-none behavior.
Because the solution eventually returns to the sta-
ble node (rest point), the system is not oscillatory,
but excitable.

Notice that the threshold is a codimension 1
manifold, which can be a point only when the sys-
tem is one-dimensional. Thus, it is futile to seek
a threshold value of the membrane voltage, unless
there is a way to freeze all the other variables.

2.1.2. Canonical model for Class 1
excitable systems

When the saddle and node in Fig. 8 coalesce and
disappear, the vector field remains small at the lo-
cation of the saddle–node point. Therefore, the
solution (x(t), y(t)) spends most time near that
point, then makes a relatively fast excursion, or
spike. This observation lays the basis for prov-
ing the Ermentrout–Kopell Theorem for Class 1

Spike

Rest State Threshold
(Separatrix)

Fig. 9. Excitable behavior and a threshold at fold (saddle–
node) bifurcation.

Neural Excitability [Hoppensteadt & Izhikevich,
1997, Theorem 8.3].

Theorem 1. (Ermentrout–Kopell). A family of
dynamical systems of the form

ẋ = f(x, λ) , x ∈ Rm , λ ∈ R , (1)

having a saddle–node on invariant circle bifurcation
for λ = 0 has a nonlocal canonical model

ϑ′ = (1− cos ϑ) + (1 + cos ϑ)r , (2)

plus higher-order terms in λ, where ′ = d/dτ , τ =√
|λ|t is slow time, ϑ ∈ S1 is a canonical variable

along the invariant circle, and r ∈ R is some pa-
rameter that depends on f and λ. That is, there
is an open O(1)-neighborhood, W, of the invariant
circle and a mapping h : W → S1 that projects all
solutions of (1) to those of (2).

The mapping h : W → S1 blows up a small
neighborhood of the saddle–node point and com-
presses the entire invariant circle to an open set
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Fig. 10. The transformation hmaps solutions of (1) to those
of (2) (from [Izhikevich, 1999b]).
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Fig. 11. Physiological diagram of the canonical model (2)
for Class 1 neural excitability (from [Hoppensteadt & Izhike-
vich, 1997]).

around π ∈ S1; see Fig. 10. Thus, when x makes
a rotation around the invariant circle (generates a
spike), the canonical variable ϑ crosses a tiny open
set around π.

The canonical model (2) has a simple
behavior:

• If r < 0, then there are two equilibria

ϑ± = ± cos−1 1 + r

1− r
which are the rest and threshold states; see
Fig. 11. The system is excitable in the follow-
ing sense: Small perturbations of ϑ that do not
lead beyond the threshold value ϑ+ die out ex-
ponentially; in contrast, if ϑ is perturbed beyond
the threshold, it grows further, passes the spike
value ϑ = π, and only after that returns to the
rest state ϑ−. The equilibria ϑ− and ϑ+ coalesce
when r → 0.
• If r > 0, then there are no equilibria, and ϑ(t) os-

cillates with the frequency ω = 2
√
r. Hence the

original system (1) oscillates with the frequency
2
√
|λ|r, which has been confirmed by experimen-

tal observations (see [Ermentrout, 1996; Gucken-
heimer et al., 1997]).

We see that r plays the role of a bifurcation pa-
rameter in (2). When it crosses 0, the qualitative
behavior changes. If r 6= 0, then we can use the
change of variables [Izhikevich, 1999b]

ϕ = 2 atan
1√
|r|

tan
ϑ

2
(3)

to transform the canonical model into one of the
following simple forms

ϕ′ = −ω cos ϕ (excitable activity; r < 0)

ϕ′ = ω (periodic activity; r > 0)

where ω = 2
√
|r| is a positive parameter. The

transformation (3) justifies the empirical observa-
tion that the behavior of the canonical model for
negative r is equivalent to that for r = −1; and for
positive r is equivalent to that for r = +1.

2.1.3. Slow adaptation currents

While deriving the canonical model (2) we implic-
itly assume that all ionic processes in (1) occur on
the time scale much faster than the interspike in-
terval. To take into account slowly (in-)activating
ionic currents, we consider the system

ẋ = f(x, y, λ)

ẏ = µg(x, y) .

If µ = O(|λ|), then this system is not near a saddle–
node on invariant circle bifurcation, but near some
other bifurcation of large codimension. Neverthe-
less, if dynamics of y satisfy some fairly general and
biophysically plausible conditions, such as y = 0 is
an exponentially stable equilibrium when x is qui-
escent, then one can derive the canonical model

ϑ′ = (1− cos ϑ) + (1 + cos ϑ)(r + su) (4)

u′ = δ(ϑ − π)− ηu (5)

where η � 1, and δ is the Dirac delta function.
Whenever ϑ crosses π (fires a spike), the slow
variable u experiences a step-like increase, then it
slowly relaxes to u = 0. The sign of s determines
whether this firing advances or delays the next fir-
ing, which results in spike facilitation or adaptation,
respectively. We discuss the latter phenomenon in
Sec. 3.1.



1182 E. M. Izhikevich

2.1.4. Weakly connected networks

The canonical model (2) is probably the simplest
excitable system in mathematical neuroscience: It
is one-dimensional,1 it has Class 1 neural excitabil-
ity or periodic activity, and it is biologically plau-
sible in the sense that any other Class 1 excitable
neuro-system can be converted to the form (2) by an
appropriate change of variables. It is not surprising
that it can be generalized [Hoppensteadt & Izhike-
vich, 1997; Izhikevich, 1999b] to a weakly connected
network of Class 1 excitable neurons

ẋi = fi(xi, λ) + ε
n∑
j=1

gij(xi, xj, λ, ε) (6)

where ε� 1 measures the strength of connections.

Theorem 2. Suppose the system (6) satisfies the
following two conditions

• Each subsystem

ẋi = fi(xi, λ) (7)

has a saddle–node bifurcation on an invariant cir-
cle for λ = 0.
• Each function gij = 0 when xj is in some small

neighborhood of the rest state.

Then there is an ε0 > 0 such that for all ε� ε0 the
family (6) has one of the following canonical mod-
els depending on the relative magnitudes of |λ| and
ε (see Fig. 12).

Case 1. |λ| � ε2.

ϑ′i = (1− cos ϑi) + (1 + cos ϑi)ri

+
n∑
j=1

wij(ϑi)δ(ϑj − π) (8)

where δ is the Dirac delta function, each function
wij has the form

wij(ϑi) = 2 atan

(
tan

ϑi
2

+ sij

)
− ϑi , (9)

see Fig. 13, and each sij is a constant.

ε

|λ|

Distance to
Bifurcation

O (ε) O (ε  )2

Strength of Connections

Case 1

Case 2

Case 3

Fig. 12. A weakly connected network of Class 1 excitable
neurons (6) has various canonical models depending on the
relative sizes of λ and ε (from [Izhikevich, 1999b]).

2

0−π +π
θ

w

i

ij

Fig. 13. A typical graph of the function (9). (Here sij = 1.
From [Izhikevich, 1999b].)

Case 2. ε2 � |λ| � ε.

ϑ′i=(1−cos ϑi)+(1+cos ϑi)

ri+ n∑
j=1

sijδ(ϑj−π)


(10)

Case 3. |λ| � ε and subsystems (7) have limit
cycles with equal frequency.

ϕ′i = ωi +
n∑
j=1

sijH(ϕj − ϕi) , H(χ) = 1− cos χ ,

(11)

The canonical phase model (11) differs from the
Kuramoto model, which has H(χ) = sin χ.

Systems (9) and (10) are pulse-coupled neural
networks in the sense that they are uncoupled un-
less at least one ϑj crosses π; i.e. it fires a spike. This
event produces a step-like increase in other variables
due to the term containing Dirac’s delta function.
Unlike the standard integrate-and-fire model, the
magnitude of the pulse is not a constant, but it
depends on the current state of the post-synaptic
neuron.

1More precisely, it is defined on a one-dimensional manifold S1.
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2.1.5. Slowly connected networks

When we consider weakly connected systems of the
form (6) we implicitly assume that synaptic trans-
mission is relatively fast in comparison with the in-
terspike period. To study the case of slow transmis-
sion, we consider the system of the form

ẋi = fi(xi, λ) + ε
n∑
j=1

gij(xi, yj)

ẏi = µpi(xi, yi)

where the vector yi describes slow synaptic pro-
cesses. We require that yi = 0 be an exponentially
stable equilibrium when xi is quiescent. The canon-
ical model for the system above is derived elsewhere,
and it has the form

ϑ′i = (1− cos ϑi) + (1 + cos ϑi)

ri + n∑
j=1

sijwj


w′i = δ(ϑj − π)− ηwi

where η = O(µ/
√
|λ|). The term siiwi denotes not

a self-synapse, but a slow adaptation (sii < 0) or
facilitation (sii > 0) process.

A remarkable fact is that ε does not have to
be small for the derivation to be valid. This col-
laborates the well-known principle that strongly but
slowly connected systems are similar to weakly con-
nected systems in many respects [Frankel & Kiemel,
1993].

2.1.6. Class 1 excitable neurons
are integrators

Consider the canonical model (8) or (10) and sup-
pose that sij > 0, which corresponds to excitatory

synapse. Then both wij(ϑi) and (1 + cos ϑi) are
non-negative for any ϑi. Thus, each incoming spike
advances ϑi toward π. The higher the frequency
of incoming spikes, the sooner ϑi will reach π and
“fire”. This important “integrate-and-fire” feature
makes Class 1 excitable systems integrators. In con-
trast, we will show that Class 2 excitable systems
may act as resonators; i.e. they respond preferen-
tially to certain resonant frequencies of the input.

2.1.7. Post-inhibitory spikes

Class 1 excitatory neurons never fire in response to
weak inhibitory pulse. Indeed, from Fig. 14 we see
that weak excitatory (inhibitory) pulses decrease
(increase) the distance to the threshold manifold.
This is not valid for Class 2 excitable neurons as we
discuss below.

Nevertheless, a strong inhibitory input could
make Class 1 neurons fire, e.g. when the thresh-
old manifold curves around the rest state as we il-
lustrate in Fig. 15. Similarly, prolonged inhibitory
input could elicit action potentials too via activat-
ing slow subthreshold inward currents, such as the
h-current. Thus, Class 1 excitatory neurons could
exhibit post-inhibitory spikes, but only when inhi-
bition is either strong or prolonged.

2.1.8. Synchronization

Identical Class 1 excitable neurons are difficult
to synchronize. This was shown numerically by
[Hansel et al., 1995], and analytically by Ermen-
trout [1996] for a pair of neurons. Later this result
was extended to networks of arbitrary number of
neurons [Izhikevich, 1999b].

Spike

Rest
State Threshold

(Separatrix)

Excitatory
Pulse

Inhibitory
Pulse

Class 1 Excitable Neuron
�

Rest
State

Spi
ke

Excitatory
Pulse ?

Inhibitory
Pulse ?

Class 2 Excitable Neuron
�

shold Set

Thre

Small
PSP

Fig. 14. Class 1 excitatory neurons: Excitatory (inhibitory) pulses decrease (increase) the distance to the threshold manifold
(red dotted line). Class 2 excitatory neurons: Both excitatory and inhibitory pulses decrease the distance to the threshold
set, thereby making the distinction between excitation and inhibition a bit confusing.
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Threshold
(Separatrix)

Strong
Pulse

Fig. 15. A strong inhibitory input can elicit spike in Class 1
excitable neuron when the threshold manifold curves around
the rest state.

Indeed, consider the phase model (11) and sup-
pose that ω1 = ω2 and s12 = s21 = 1. Then, the
phase difference, χ = ϕ2 − ϕ1, satisfies

χ′ = H(−χ)−H(χ) ≡ 0 .

because H(χ) = 1− cos χ is an even function. This
prevents stable synchronization, at least on the time
scale of order 1/ε. In contrast, Class 2 excitable sys-
tems near supercritical Andronov–Hopf bifurcation
have

H(χ) = sin(χ− ψ) ,

where ψ ∈ S1 is some parameter that has the mean-
ing of the natural phase difference [Hoppensteadt
& Izhikevich, 1996] because χ → ψ in the unidi-
rectional case. If ψ 6= ±π/2, then such systems
always synchronize stably. Whether or not this fact
can be extended to all Class 2 excitable and spiking
systems is still unknown, although numerous simu-
lations suggest so.

2.2. Class 2 excitable systems near an
Andronov Hopf bifurcation

The Andronov–Hopf bifurcation was thought to be
the primary bifurcation of the rest potential in neu-
rons because it is a primary route from rest to
oscillations in the Hodgkin–Huxley model, which
is one of the most significant models in computa-
tional neuroscience. As a result, this bifurcation
has been scrutinized numerically and analytically
by many researches (see e.g. [Hassard, 1978; Troy,
1978; Rinzel & Miller, 1980; Hassard et al., 1981;
Holden et al., 1991; Bedrov et al., 1992]).

A remarkable historical fact is that many im-
portant neuroscience properties, such as all-or-none
response, threshold, and integration, have been

introduced or illustrated using classical Hodgkin–
Huxley model despite the fact that the model does
not exhibit any of these properties, as we see below.

The Hodgkin–Huxley model, as well as many
other biophysical models, has a typical bifurcation
structure as depicted in Fig. 16. While the bifur-
cation parameter I increases, stable and unstable
limit cycles appear via fold limit cycle bifurcation.
The latter shrinks down to the rest state and makes
it lose stability via subcritical Andronov–Hopf
bifurcation.

At any value of I the phase portrait is equiv-
alent to that of the topological normal form for
a Bautin bifurcation [Kuznetsov, 1995; Izhikevich,
2000a]

z′ = (a+ iω) + bz|z|2 − z|z|4 , z ∈ C , (12)

Apart from qualitative illustration of bifurcations
in Hodgkin–Huxley-type systems, the model above
may be of limited value since it fails to reflect the
relaxation nature of the dynamics.

2.2.1. Threshold, excitability, and bistability

An important consequence of relaxation dynamics
is that the flow can undergo large contractions and
expansions. For example, the stable and unsta-
ble limit cycles in Fig. 16(b) are so close to each
other when they are near an equilibrium, that they
could become indistinguishable if small noise is in-
troduced into the system.

Figures 16(b) and 16(c) illustrate the bistable
nature of dynamics of the Hodgkin–Huxley model.
The unstable limit cycle separates the basins of
attraction of the rest state and the large ampli-
tude limit cycle corresponding to repetitive spik-
ing. Therefore, the unstable cycle is a threshold
manifold.

When the equilibrium is a global attractor, as
in Fig. 16(a), a small perturbation of a solution near
the equilibrium can still produce a large deviation;
see Fig. 17. Therefore, the system is excitable with
a typical periodic pseudo-orbit depicted in Fig. 5.
However, a threshold manifold may not exist. In-
deed, if the initial condition lies in the yellow re-
gion between the two solutions in the right inlet in
Fig. 17, the system can produce a spike having an
arbitrary intermediate amplitude. We refer to the
region as being a threshold set. We see that the
Hodgkin–Huxley model does not have all-or-none
response.
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Fig. 16. Typical bifurcation structure in Hodgkin–Huxley model.

2.2.2. Quasithreshold phenomenon

The absence of a well-defined threshold manifold
in the Hodgkin–Huxley model was discussed in de-
tail by FitzHugh [1955], who made the following
observation: The distance between the solutions
producing small PSP and large spike in Fig. 17
can be as small as 0.1 µV, which is smaller than
the noisy fluctuations of the membrane potential.
Thus, to observe an intermediate-amplitude spike

in the Hodgkin–Huxley model one needs to spec-

ify the initial condition with the accuracy beyond

the limits of uncertainty which appear when the

physical interpretation of the model is considered.

As a result, the model exhibits all-or-none behav-

ior almost all the time for almost all initial condi-

tions, and its threshold set looks almost like a man-

ifold. FitzHugh [1955] referred to this as being a

quasithreshold phenomenon.
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Threshold Set

Spike

Small
PSP

Fig. 17. Neural systems near Andronov–Hopf bifurcation
may not have a well-defined threshold. Depicted are two
“nearby” solutions of the Hodgkin–Huxley system from
Fig. 16(a). One corresponds to a small amplitude postsynap-
tic potential (PSP), while the other evolves into an action
potential.

2.2.3. Response to doublets

An excitable system at an Andronov–Hopf bifurca-
tion possesses an important information processing
capability: Its response to a pair (or a sequence) of
stimuli depends on the timing between the stim-
uli relative to the period of the small amplitude
damped oscillation at the equilibrium. We illustrate
this in Fig. 18, which motivated the creation of a
simple resonate-and-fire model [Izhikevich, 2001].
A pair of relatively strong pulsed perturbations (a
doublet), may or may not evoke an action potential
depending on its interspike interval. When the in-
terval is near the period of the damped oscillations
(or its multiple), then the effect of the perturbations
can accumulate. Otherwise the perturbations may
effectively cancel each other. Thus, the interspike
interval in doublets or triplets plays an important
role. This phenomenon is a part of the mechanism
of FM (Frequency Modulated) interactions, and it
is quite general in neural models [Hoppensteadt &
Izhikevich, 1998; Izhikevich, 1999a]. We discuss it
in detail in Sec. 3.5.

2.2.4. Selective communication
and multiplexing

The same doublet may or may not elicit response
in a postsynaptic neuron depending on its eigen-
frequency. This provides a powerful mechanism for
selective communication between such neurons; see
Fig. 19. In particular, such neurons can multiplex;
i.e. send many messages via a single transmission
line; see Fig. 20.

Resonant
Doublet

V(t)

V(t)

t�

t�

Nonresonant
Doublet

Spike

"Excitatory" Pulses

Resonant
Doublet

V(t)

V(t)

t�

t�

Nonresonant
Doublet

Spike

"Inhibitory" Pulses�

Fig. 18. Response of the Hodgkin–Huxley model to a dou-
blet (i.e. a pair of pulses) depends on the length of the inter-
spike interval. Notice that an “inhibitory” pulse can make
the neuron fire.

1ω

1ω

2ω

3ω

Fig. 19. Selective interaction: A doublet with the inter-
spike frequency ω1 is resonant for another neuron having
similar eigenfrequency and nonresonant for the others (from
[Izhikevich, 2001]).
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Fig. 20. Multiplexing of neural signals via doublets: Resonate-and-fire neurons having equal eigenfrequencies can interact
selectively without any cross interference with other resonate-and-fire neurons (from [Izhikevich, 2001]).

2.2.5. Weak stimulation

Figure 18 is only an illustration, since presynaptic
pulses do not elicit a step-like increase in membrane
potential of postsynaptic Class 2 excitable neurons.
They rather induce a weak and relatively slow forc-
ing. Nevertheless, the FM mechanism persists, as
we show next.

Let us disregard the global structure of the flow
and consider its dynamics in a small neighborhood
of the rest state. We are interested in a response
of the system near the rest state to a weak external
stimulation εI(t) that is due to incoming spikes.

It is well known that any system

ẋ = f(x, ε) , x ∈ Rm

in an ε-neighborhood of the Andronov–Hopf bifur-
cation can be reduced to its topological normal form

ż = (εa+ iω)z ± z|z|2 , z ∈ C ,

by a continuous transformation. Applying the
transformation to the weakly forced system

ẋ = f(x, ε) + εI(t)

results in

ż = εJ(t) + (εa+ iω)z ± z|z|2 (13)

plus higher-order terms, where J(t) ∈ C is a linear
projection of I(t) ∈ Rm. The change of variables

z =
√
εveiωt , v ∈ C ,

results in the equation

v̇ =
√
εJ(t)e−iωt + ε(av ± v|v|2) .

We average this system and obtain the equation

v̇ =
√
εb+ ε(av ± v|v|2) ,

where

b = lim
T→∞

1

T

∫ T

0
J(t)e−iωt dt (14)

is the Fourier coefficient of J(t) corresponding to
frequency ω. The key observation here is that b can
vanish even when J(t) 6= 0.

We assume that the equilibrium is stable,
i.e. a < 0. If b = 0, then v, and hence x, stay near
the equilibrium. In contrast, If b 6= 0, then v grows
like
√
εbt until x = O(

√
εv) leaves a small neigh-

borhood of the rest state, possibly getting outside
of the unstable limit cycle in Fig. 16(c) and gener-
ating a spike.

2.2.6. Class 2 excitable neurons
are resonators

We see that a system near an Andronov–Hopf bifur-
cation acts as a bandpass filter: It extracts the com-
ponent of the external input I(t) that corresponds
to the “resonant” eigenfrequency ω and disregards
the rest of the spectrum. Thus, in order to evoke
a response, one should stimulate such a neuron at
the resonant frequency. This behavior has been
described in thalamic [Hutcheon et al., 1994; Puil
et al., 1994] and cortical neurons [Jansen & Karnup,
1994; Gutfreund et al., 1995; Hutcheon et al., 1996].
Llinas [1988, 1991] refers to such neurons as being
resonators. In contrast to Class 1 excitable neu-
rons, increasing the frequency of stimulation may
delay or even terminate firing of a Class 2 excitable
neuron [Izhikevich, 2001], since it may decrease the
value of |b| defined by (14). We return to this issue
in Sec. 3.5 when we discuss FM interactions.
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2.2.7. Post-inhibitory spike

A salient neuro-computational feature of Class 2
excitable neurons is that they can fire in response
to a weak inhibitory pulse (see Fig. 18), which is
referred to as being a post-inhibitory spike. This
makes the distinction between excitation and inhi-
bition a bit confusing, since both can lead to an
action potential. Such a confusion does not exist in
Class 1 excitable neurons, because weak excitatory
(inhibitory) pulses decrease (increase) the distance
to the threshold manifold; see Fig. 14. Since the
threshold set is always “wrapped” around the rest
state of Class 2 excitable neuron, any perturbation
would eventually move the solution closer to the set,
thereby facilitating the neuron’s response to other
pulses having appropriate timing.

2.3. Saddle node separatrix-loop
bifurcation

Now consider the case of fold (off limit cycle) bi-
furcation as in Fig. 17. If the limit cycle is suffi-
ciently far away from the saddle–node point, then
its frequency is generically nonzero, and hence such
a bistable system has Class 2 excitability.

Quite often however the limit cycle is near the
saddle–node point, as in Fig. 21. This usually hap-
pens when the system is near a codimension 2 bi-
furcation called saddle–node separatrix-loop bifur-
cation [Levi et al., 1978; Schecter, 1987; Hoppen-
steadt, 1997], whose complete unfolding is depicted
in Fig. 22. The saddle–node separatrix-loop bifur-
cation is typical in two-dimensional systems having
nullclines intersected as in Fig. 23. Such systems
include Morris–Lecar, Chay–Cook, and Wilson–
Cowan models.

Fold  (off Limit Cycle)
Bifurcation

Saddle-Node
Separatrix-Loop Bifurcation

Fig. 21. Fold bifurcation can be near a limit cycle if the
system is near a saddle–node separatrix loop bifurcation.

Saddle-Node�

Separatrix Loop
Bifurcation�

Fig. 22. Unfolding of a codimension 2 saddle–node sepa-
ratrix loop bifurcation (from [Hoppensteadt & Izhikevich,
1997]).

Fig. 23. Phase portraits from Fig. 22 are typical in two-
dimensional systems, such as Wilson–Cowan or Morris–Lecar
models (modified from [Hoppensteadt & Izhikevich, 1997]).

As we will see in Sec. 4 below, this bifurcation
plays an important role in at least four types of
bursting including the “fold/homoclinic” bursting,
which is also known as “square-wave” bursting.

2.3.1. Canonical model

It follows from the normally hyperbolic com-
pact invariant manifold theory [Fenichel, 1971;
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Saddle-Node
on Invariant
Circle

Saddle-Node
Separatrix Loop

Invariant
Foliation

Spike

Fig. 24. A small neighborhood of the saddle–node point can
be invariantly foliated by stable submanifolds.

Hoppensteadt & Izhikevich, 1997, Chap. 4] that a
small neighborhood of the saddle–node point can be
invariantly foliated by stable submanifolds, which
are frequently referred to as being isochrons in the
context of oscillatory systems; see Fig. 24. Any two
distinct solutions starting on the same submanifold
will eventually approach each other and have iden-
tical asymptotic behavior. This fact was used in the
proof of the Ermentrout–Kopell theorem to reduce
the dimension of a system.

Now consider a system near a saddle–node sep-
aratrix loop bifurcation. All solutions in some small
neighborhood of the saddle–node point (shaded
area in Fig. 24) approach exponentially the center
manifold. A solution on the center manifold slowly
diverges from the equilibrium, makes an excursion
(spike) and returns to the neighborhood (shaded
area). But it enters the neighborhood along one of
the stable submanifolds. The spike occurs when the
canonical variable ϑ in (2) crosses a tiny neighbor-
hood of π, but instead of being reset to −π, the
variable ϑ acquires some new value a ∈ S1 that is
determined by the location of the stable submani-
fold that was hit by the separatrix loop; see Fig. 25.

Thus, one can prove under certain natural con-
ditions that the canonical model for the saddle–
node separatrix-loop bifurcation has the form (2)
with the exception that

ϑ(t)← a when ϑ(t) = π .

The parameter r in the canonical model is lo-
cal in the sense that it depends on some partial
derivatives near the equilibrium [Hoppensteadt &
Izhikevich, 1997, Chap. 8]. In contrast, the pa-
rameter a is global since it depends on Melnikov’s
integral along the unperturbed separatrix trajec-

Saddle-Node
on Invariant
Circle

Saddle-Node
Separatrix Loop

Spike
Spikeπ−π

0 0

−π
π

Fig. 25. The saddle–node separatrix loop bifurcation can be
treated the same way as the saddle–node on invariant circle
bifurcation with the exception that the variable ϑ in (2) is
reset to some value a after crossing π.

Spike

Perturbation

Quiescence

Fig. 26. An example of a small amplitude subthreshold
oscillation (blue) corresponding to the quiescent state.

tory. The canonical model exhibits a fold bifurca-
tion when r = 0, and a saddle homoclinic orbit bi-
furcation when r < 0 and cos a = (1+r)/(1−r). Its
bifurcation diagram is similar to the one depicted
in Fig. 22, where the a-axis is pointed downward.

2.4. Fast subthreshold oscillations

So far we have considered neuron dynamics at an
equilibrium corresponding to the rest (quiescent)
state. Next suppose that the membrane potential
has a fast stable small amplitude “subthreshold”
oscillation corresponding to the quiescent state, as
we illustrate in Fig. 26. Such neurons have been
recorded, e.g. in layer 4 of the guinea pig frontal
cortex [Llinas et al., 1991]. Fast subthreshold os-
cillations can be seen in conductance-based models
[Shorten & Wall, 2000; Wang, 1993].

The simplest and possibly least interesting case
is when the neuron’s activity is always oscillatory in
a certain parameter range with an amplitude pro-
portional to the external input, as in Fig. 27. In
this case the distinction between the sub- and super-
threshold oscillations may be made by the synap-
tic release mechanism; that is, the amplitude of



1190 E. M. Izhikevich

Small External Input�No External Input Large External Input�

Fig. 27. The amplitude of oscillation may depend on the
external input.

Fig. 28. Existence of a large amplitude periodic pseudo-
orbit near small amplitude “subthreshold” limit cycle makes
the dynamics excitable.

oscillation is said to be superthreshold if it is large
enough to trigger the release of a neurotransmitter
from the presynaptic endings.

Notice that small amplitude subthreshold os-
cillations do not preclude the system from being
excitable, since it can still have a large amplitude
periodic pseudo-orbit; see Fig. 28.

2.4.1. Possible bifurcations

In a more interesting case the small amplitude limit
cycle may bifurcate so that some large amplitude
limit cycle corresponding to a periodic spiking be-
comes globally stable.

Obviously, the saddle–node on invariant circle
and the supercritical Andronov–Hopf bifurcation
should be dismissed as possible bifurcations, since
they result in a stable equilibrium and not in a large
amplitude limit cycle. Similarly, the supercritical
flip (period doubling) and supercritical Neimark–
Sacker bifurcations [Kuznetsov, 1995] should be dis-
carded since the newborn attractors lie in a small
neighborhood of the old ones, which is often referred
to as a soft loss of stability.

We consider next bifurcations that result in
sharp loss of stability. These are the fold limit cy-
cle and saddle homoclinic orbit bifurcations in the
planar case (see Fig. 29), and the saddle–focus ho-
moclinic orbit, subcritical flip, subcritical Neimark–
Sacker, fold limit cycle on homoclinic torus, and

Fold Limit Cycle Bifurcation

Saddle Homoclinic Orbit Bifurcation

Fig. 29. Codimension 1 bifurcations of a stable limit cycle in
planar systems that result in sharp loss of stability (see also
Fig. 30). Fold limit cycle: Stable limit cycle is approached by
an unstable one, they coalesce, and then disappear. Saddle
homoclinic orbit : A limit cycle grows into a saddle. Unsta-
ble manifold of the saddle makes a loop and returns via the
stable manifold (separatrix).

the “blue-sky” bifurcations in the three-dimensional
case; see Fig. 30. The only bifurcation left is the
focus–focus homoclinic orbit, which we do not il-
lustrate since it occurs in systems of dimension 4
and up; see [Kuznetsov, 1995].

The planar bifurcations are ubiquitous in two-
dimensional systems having nullclines intersected as
in Fig. 31. Notice the shape of the slow nullcline for
the saddle homoclinic orbit bifurcation. One can
easily modify existing models, such as the van der
Pol or FitzHugh–Nagumo oscillators, to get such
dynamics. For example, to make Fig. 34 we used

v̇ = v − v3/3− w
ẇ = ε(a+ v − S(w))

(15)

where

S(w) =
b

1 + e(c−w)/d
,

is an S-shaped function. Such a system often ex-
hibits the big saddle homoclinic orbit bifurcation
depicted in Fig. 32.

There is a drastic change in the behavior of
the small limit cycle when the system approaches
the bifurcation state. Its frequency is nonzero for
the fold limit cycle, flip, Neimark–Sacker, blue-sky,
and fold limit cycle on homoclinic torus bifurca-
tions, and zero for the homoclinic orbit bifurcations
since the cycle becomes a homoclinic trajectory to
an equilibrium. This gives a criterion to distin-
guish the bifurcations experimentally. Both cases,



Subcritical Neimark-Sacker Bifurcation

Fold Limit Cycle on Homoclinic Torus Bifurcation�

Blue-Sky Catastrophe
�

Saddle-Focus Homoclinic Orbit Bifurcation�

Subcritical Flip Bifurcation

Fig. 30. Codimension 1 bifurcations of a stable limit cycle in three-dimensional systems that result in sharp loss of stability
(see also Fig. 29). Saddle–focus homoclinic orbit : A limit cycle grows into a saddle–focus and becomes a homoclinic orbit.
Subcritical flip: The stable limit cycle is approached by an unstable limit cycle having twice the period, they coalesce, and
the former loses stability. Subcritical Neimark–Sacker : An unstable invariant torus shrinks down to a stable limit cycle. Fold
limit cycle on homoclinic torus: An unstable manifold of a nonhyperbolic limit cycle returns to the cycle forming a homoclinic
torus. Blue-sky catastrophe: An unstable manifold of a nonhyperbolic limit cycle becomes a tube and returns to the cycle
forming “French horn”; see [Kuznetsov, 1995; Il’iashenko & Li, 1999] for detailed definitions.
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Fold Limit Cycle Bifurcation�

Saddle Homoclinic Orbit Bifurcation�

Fig. 31. Typical intersections of nullclines for fold limit cycle and saddle homoclinic orbit bifurcations.

Fig. 32. Big saddle homoclinic orbit (from [Hoppensteadt
& Izhikevich, 1997]).

i.e. zero and nonzero frequency, were recorded in
vitro by Llinas et al. [1991].

Below we discuss neuro-computational proper-
ties of neurons having subthreshold oscillation. Our
results are summarized in the lower part of Table 1.

2.4.2. Class of excitability

Recall that the class of excitability is determined
not by the frequency of the subthreshold oscilla-
tion, but by the frequency of the emerging spiking;
that is, by the frequency of the large amplitude limit
cycle, such as the one in Fig. 31. The figure sug-
gests that the frequency may be nonzero in those
two planar cases, thus resulting in Class 2 excitabil-
ity. Similarly, the saddle–focus homoclinic orbit,
subcritical flip, and subcritical Neimark–Sacker bi-
furcations result in Class 2 excitability unless the
system is near certain codimension 2 bifurcations.

In contrast, the blue-sky catastrophe and the
fold limit cycle on homoclinic torus bifurcation re-
sult in Class 1 excitability. Indeed, in both cases
the solution spends most of its time rotating around
the recently disappeared small amplitude fold limit
cycle thereby producing long-period spiking.

2.4.3. Threshold and excitability

Figure 31 illustrates bistable dynamics of planar
systems having a fold limit cycle bifurcation. There
is a well-defined threshold manifold: The interme-
diate, unstable limit cycle.

In contrast, when the fold limit cycle has a
homoclinic structure; e.g. a homoclinic orbit or a
torus, then the system has a periodic pseudo-orbit
(see Fig. 33), and hence is only excitable. Local be-
havior near such a fold cycle is similar to that near a
saddle–node on invariant circle where stable, unsta-
ble, and fold limit cycles correspond to node, sad-
dle, and saddle–node equilibria, respectively. The
system has a well-defined threshold manifold —
the union of an unstable limit cycle and its stable
submanifold (yellow region in Fig. 35). Such an
oscillatory system acts as an integrator.

The saddle, saddle–focus, and focus–focus ho-
moclinic orbit bifurcations have qualitatively sim-
ilar neuro-computational properties: They have
well-defined thresholds; namely, the saddle’s stable
manifold. The systems may be bistable (Fig. 31) or
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Fig. 33. An existence of a large amplitude periodic pseudo-
orbit near small amplitude “subthreshold” fold limit cycle
makes the dynamics excitable.

only excitable (Fig. 34) depending on the existence
of an enclosing limit cycle.

Stable limit cycles near subcritical flip and
Neimark–Sacker bifurcations also have well-defined

threshold manifolds; namely, the stable submani-
fold of unstable double-period cycle and the unsta-
ble torus, respectively.

2.4.4. Nonlinear resonators

Neural systems having subthreshold oscillations
may have an interesting property: Their response
to a brief relatively strong stimulus depends on the
timing of the stimulus relative to the phase of the
oscillation. We illustrate this issue in Fig. 34 using
(15) near the saddle homoclinic orbit bifurcation. It
is easy to see that the response depends on where
the solution is on the limit cycle at the time of the
perturbation.

There is a similarity between the mechanisms
depicted in Figs. 18 and 34. Both use the fact that
a neuron may have its own subthreshold tempo-
ral dynamics that affect its response to a perturba-
tion. The only difference is that the former cannot
oscillate by itself; therefore, it needs a first spike
to evoke a damped subthreshold oscillation whose
phase would augment the response to the second
spike.

Threshold
(Separatrix)

v(t)

Stimulus
�

v(t)

Stimulus
�v

w�

Fig. 34. Response of a system having a small amplitude oscillation depends on the timing of the incoming spike relative to
the phase of the subthreshold oscillation.
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To Spiking
Limit Cycle

Threshold
ManifoldSubthreshold

Limit Cycle

V

Fig. 35. A system near fold limit cycle bifurcation can still
act as integrator: The effect of perturbations does not depend
on the subthreshold oscillation phase. Moreover, increasing
the subthreshold oscillation amplitude does not decrease the
distance to the threshold manifold.

We could have also used any other bifurcations
(except blue-sky and homoclinic torus) to illustrate
the mechanism depicted in Fig. 34. A distinguished
feature of the saddle homoclinic orbit bifurcation
is that there is an open region above the cycle in
Fig. 34 such that if perturbations are directed to-
ward this region, then they would never elicit a
spike regardless of their timing and strength.

Finally, notice that the existence of subthresh-
old oscillation does not necessarily imply that the
system is a resonator, especially when its dimension
is greater than 2. For example, the system near fold
limit cycle bifurcation depicted in Fig. 35 acts as
an integrator. Although appropriately timed per-
turbations can change the amplitude of oscillation,
but such a change does not decrease significantly
the distance to the threshold manifold, and hence
does not facilitate the spike, see also Fig. 122.

3. Periodic Spiking

So far we have described mechanisms of transition
from a quiescent state to repetitive firing; that is,
from an equilibrium or a small amplitude limit cy-
cle to a large amplitude limit cycle attractor. How
does the large attractor arise?

Much insight on possible mechanisms for the
appearance of the large attractor can be gained
when we consider possible mechanisms of transition
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Excitable
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Fig. 36. Class 1 (2) excitable systems exhibit zero (nonzero)
emerging spiking. Class 1 (2) spiking systems exhibit zero
(nonzero) terminating spiking.

from repetitive spiking to a rest state. Following
Hodgkin’s experiment [1948] we suggest the follow-
ing classification of repetitive spiking based on the
frequency as oscillations terminate; see Fig. 36.

• Class 1 Spiking Systems exhibit terminating os-
cillations having arbitrary low frequency.
• Class 2 Spiking Systems exhibit oscillations that

terminate with a nonzero frequency.

We stress that studying terminating oscillations
provides a clue about how the attractor correspond-
ing to repetitive spiking appears and disappears. It
usually does not provide any information on how
the spiking activity appears. The latter issue is
related to neural excitability, as discussed in the
previous section.

It is easy to see that a saddle–node on invari-
ant circle bifurcation results in a system that is
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Fig. 37. If the rest state disappears via fold (off limit cycle)
bifurcation and the limit cycle disappears via saddle homo-
clinic orbit bifurcation (see Fig. 22 for reference), then the
system is Class 2 excitable but Class 1 spiking.

simultaneously Class 1 excitable and Class 1 spik-
ing. Similarly, the supercritical Andronov–Hopf bi-
furcation results in a Class 2 excitable and Class 2
spiking system. In both cases the transitions from
rest to repetitive firing and back occur via the same
bifurcation.

In general, the bifurcation of the rest state may
not be the same as the bifurcation of the limit cy-
cle. In this case a stable rest state and a stable
limit cycle coexist making the dynamics bistable,
and the class of excitability may not be the same
as the class of spiking. We will present several such
examples when we discuss bursting.

An example of Class 2 excitable but Class 1
spiking system is the fold (off limit cycle) bifurca-
tion. If the system is sufficiently away from the
codimension 2 saddle–node separatrix-loop bifurca-
tion (see Figs. 22 and 37), then the frequency of
the limit cycle is not zero at the moment the rest
state disappears. This results in Class 2 excitability.
The limit cycle can disappear via a saddle–node on
invariant circle or saddle homoclinic orbit bifurca-
tion. Both bifurcations are homoclinic, and hence
they result in Class 1 spiking.

Possible Bifurcations. When a repetitive spiking
activity shuts down, the limit cycle attractor either
loses its stability or disappears. If it loses stability
via a soft bifurcation, such as the supercritical flip
(period doubling) or supercritical Neimark–Sacker,
the new attractor lies in a small neighborhood of
the old one, so that the system continues to fire but

with a different firing pattern. To shut down the
firing, the loss of stability must be sharp; e.g. via a
subcritical flip or subcritical Neimark–Sacker bifur-
cations; see Fig. 30.

The large amplitude limit cycle can also disap-
pear, for example, via saddle homoclinic orbit or
fold limit cycle bifurcation (Fig. 29), saddle–node
on invariant circle or supercritical Andronov–Hopf
bifurcation (Fig. 7), or those from Fig. 30.

We will see that

• Class 1 spiking occurs via saddle–node on invari-
ant circle, saddle, saddle–focus, or focus–focus
homoclinic orbit, blue-sky, or fold limit cycle on
homoclinic torus bifurcations.
• Class 2 spiking occurs via supercritical

Andronov–Hopf, fold limit cycle, subcritical flip,
or subcritical Neimark–Sacker bifurcations.

Bifurcations and Current I. The most obvious
way to study bifurcations in neuron dynamics is to
use the same electrode that measures the membrane
voltage to induce the current I, which we treat as
a bifurcation parameter. There could be many in-
terpretations of the physiological meaning of I. For
example, we can interpret I as a synaptic current

I = gsyn(Esyn − V ) (16)

or as the current that is due to the difference of
voltages in soma and dendrites

I = g(Vdendr − V ) ,

etc. Thus, the “actual” bifurcation parameters in
the spiking mechanism are gsyn, Vdendr, etc., but
not I. Therefore, instead of changing I, we should
slowly change, e.g. gsyn, measure the voltage, and
inject I calculated according to (16), which in-
volves the dynamic clamp techniques [Sharp et al.,
1993; Hutcheon et al., 1996]. Both procedures are
equivalent when the membrane potential is at rest,
but they may provide quite different bifurcation
pictures when the potential oscillates. Thus, one
should use (16) or its equivalent to study bifurca-
tions of spiking limit cycles.

Another potential problem is that the rate of
change of a bifurcation parameter should be slow
enough so that it is treated as a constant by the
fast spiking subsystem. Yet it should not be too
slow, or else slow physiological processes start to
interfere and may significantly distort the bifurca-
tions picture.
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Fig. 38. The function −1/ ln λ may not seem to vanish as
λ→ 0.

3.1. Class 1 spiking systems

Suppose the limit cycle disappears via one of the
following bifurcations:

• Saddle–node on invariant circle bifurcation, or
blue-sky catastrophe.
• Saddle, saddle–focus, or focus–focus homoclinic

orbit bifurcations.

In all these cases the cycle becomes homoclinic to
an equilibrium, hence its period goes to infinity, and
the frequency to zero. All these bifurcations result
in Class 1 spiking, but the frequency of terminat-
ing oscillations have different asymptotic behavior:
The former group’s frequency decays as O(

√
λ),

where λ measures the distance to the bifurcation
(see Sec. 2.1), while the latter exhibits O(1/| ln λ|).
We plot these functions in Fig. 38 to illustrate a
possible pitfall: The latter may not seem to van-
ish as λ → 0, incorrectly suggesting a frequency
curve for Class 2 spiking system. Thus, extra cau-
tion should be used when measuring the functions
experimentally.

3.1.1. Threshold and bistability

An important difference between the bifurcations
leading to Class 1 spiking is that there may be no
coexistence of attractors at the saddle–node on in-
variant circle and blue-sky bifurcations, while there
is at the saddle homoclinic orbit bifurcations. Thus,
the former may not result in bistable dynamics.
A system is either excitable or oscillatory, and no
pulse can shut down the oscillation. In contrast,
the latter always result in bistable systems having a

Saddle Homoclinic Orbit

Big Saddle Homoclinic Orbit�

Fig. 39. Disappearance of a limit cycle via saddle homoclinic orbit bifurcation in (15). Any perturbation that pushes the
solution out of the yellow area would shut down oscillation.
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threshold manifold, and the oscillation can be shut
down by an appropriately placed pulse, as we illus-
trate in Fig. 39. Thus, the two cases differ not only
in the asymptotics of spiking frequency, but also in
the coexistence of spiking and rest states.

3.1.2. Spike frequency adaptation

Slow adaptation processes can lower the frequency
of periodic spiking. To illustrate this issue we use
the canonical model for Class 1 excitability (4) with
an additional adaptation current (5), whose dy-
namic is depicted in Fig. 40. One can clearly see
that the spiking slows down while the adaptation
process denoted by u builds up.

In Fig. 41 we change the bifurcation parame-
ter r, which has the meaning of injected current,
and compare the asymptotic spiking frequency of
the canonical model with and without adaptation
currents. As one expects, the currents lower signif-
icantly the frequency curve.

Wang [1998] observed an interesting phe-
nomenon: The slow adaptation currents seemed to
linearize the frequency curve. Later Ermentrout
[1998] has proven that this is a general property
of all Class 1 spiking systems, i.e. that the infinite
slope of the frequency curve at zero becomes finite.
Indeed, let ω(λ) describe the dependence of the fir-
ing rate on λ when there is no adaptation. In our
cases ω′(0) = ∞. Let α be the amount of nega-

tive feedback so that the true firing rate becomes
ω(λ−α). The feedback is proportional to the firing
rate, i.e.

α = β(ω(λ− α)) (17)

where β(ω) is some function satisfying

β(0) = 0 and β′(0) > 0 .

Following [Ermentrout, 1998] we implicitly differen-
tiate the equation with respect to λ to obtain

dα

dλ
= β′(ω(λ− α))ω′(λ− α)

(
1− dα

dλ

)
,

which results in

dα

dλ
=

β′(ω)ω′

1 + β′(ω)ω′
→ 1 as λ→ 0 .

Hence α(λ) ≈ λ, and from (17) we can see that
the true firing rate is λ/β′(0). In particular, it has
a finite slope 1/β′(0) at the bifurcation point, see
Fig. 42.

As was pointed by Ermentrout [1998], the lin-
earization takes place in some intermediate neigh-
borhood of the bifurcation where the interspike in-
terval is smaller than the adaptation time scale.
The method discussed above breaks down at the
vicinity of the bifurcation point unless the adapta-
tion is unrealistically slow. In Fig. 41 we magnified
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Fig. 40. Slow adaptation processes can change the frequency of repetitive spiking. Shown are simulations of the canonical
model (4, 5) with r = 2, s = −1/5 and η = 1/50.
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a small neighborhood of the origin to demonstrate
that the linearized frequency curve eventually be-
comes nonlinear with an infinite slope. Thus, adap-
tation linearizes the frequency curve only in the
sense that it pushes nonlinearity closer to the bi-
furcation point.

3.2. Class 2 spiking systems

Whether a limit cycle shrinks to a point via an
Andronov–Hopf bifurcation, disappears via a fold
limit cycle bifurcation or loses stability via a sub-
critical flip or Neimark–Sacker bifurcations, its fre-
quency does not vanish. Hence, all these bifurca-
tions result in Class 2 spiking. In the latter two
cases there is a well-defined threshold manifold, and

the dynamics can be bistable. Thus, an appropriate
pulse may shut down the oscillation.

3.3. Coefficient of variation

Neurons exhibit random firing patterns when they
are subject to random stimulation. The firing ran-
domness can be measured by the coefficient of vari-
ation CV . Periodic firing has CV = 0, while Pois-
son one has CV = 1. Most cortical neurons have
high values of CV , while many biophysically de-
tailed Hodgkin–Huxley type models have low ones.
This inconsistency is discussed by Softky and Koch
[1993]. Gutkin and Ermentrout [1998] showed that
the inconsistency may lie in the bifurcation mecha-
nism of generation of action potentials.
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To illustrate the issue, consider the frequency
curves in Fig. 36 and suppose that random I fluc-
tuates between the rest and spiking parts. If a sys-
tem is Class 2 spiking, then it is either silent or
fires with a regular interspike interval that is rela-
tively independent from I. This leads to low CV .
In contrast, if the system is Class 1 excitable, then
the interspike interval is quite random because it is
sensitive to small perturbations of I, especially near
the bifurcation.

3.4. Quasi-periodic spiking

Neural firing can be quasiperiodic or chaotic when
the system’s dimension is greater than 2. The for-
mer case implies that there is a large amplitude
stable invariant torus. Such a torus usually appears
and disappears via supercritical Neimark–Sacker bi-
furcations [Kuznetsov, 1995] of a large amplitude
stable limit cycle. In this case the class of spiking is
determined by bifurcations of the limit cycle, which
we discussed above, and not of the torus.

An interesting case is when the torus is homo-
clinic to a nonhyperbolic small amplitude limit cy-
cle corresponding to a “subthreshold” oscillation,
see Fig. 30. In this case the quasiperiodic firing ap-
pears straight from the small limit cycle [Kuznetsov,
1995; Il’iashenko & Li, 1999]. It has two frequen-
cies: One corresponds to a subthreshold oscillation,
it is defined by the frequency of the small limit cy-
cle. The other corresponds to firing, it depends on
the distance from bifurcation, λ, and has the same
asymptotic, O(

√
λ), as the one for saddle–node

on invariant circle bifurcation or blue-sky catastro-
phe. Hence such a quasiperiodic spiking belongs to
Class 1.

Studying chaotic firing goes beyond the scope
of this paper, although we mention chaotic bursting
in Sec. 5.3.

3.5. Phase equations and
FM interactions

Let us consider weakly connected neurons having
periodic or quasiperiodic activity

ẋi = fi(xi) + ε
n∑
j=1

gij(xi, xj, ε) (18)

where ε� 1 measures the strength of connections.
Hoppensteadt and Izhikevich [1997] obtained the es-
timate 0.004 < ε < 0.008 using experimental data

from the hippocampus. Neocortex data suggests 10
times stronger connections.

Dynamics of (18) can be described by a weakly
connected phase model

ϑ̇ = ωi + ε
n∑
j=1

hij(ϑi, ϑj , ε) . (19)

Moreover, one can prove (see [Hoppensteadt &
Izhikevich, 1997, Chap. 9], for exposition of relevant
theory) that there is actually a continuous change of
variables that transforms (18) into the phase model,
thereby making it a canonical model.

Here ϑi ∈ S1 is the phase of oscillation of the
ith neuron, and ωi is its frequency. Each function
hij depends on fi, fj, and gij . Its meaning is quite
different from that of gij .

• Each function gij(xi, xj , ε) in (18) describes
physical connections from the jth to the ith
oscillator.
• Each function hij(ϑi, ϑj , ε) in (19) describes ef-

fective connections from the jth to the ith oscil-
lator. That is, it describes how the phase of the
jth oscillator affects that of the ith one.

The function hij has the following interesting prop-
erty: It is nearly constant and does not depend
on ϑj unless ωi and ωj are low-order quasiresonant
[Hoppensteadt & Izhikevich, 1997, 1998], i.e. unless

|pωi + qωj| < ε

for some small integers p and q. This result has been
generalized for quasiperiodic oscillators [Izhikevich,
1999a].

A direct consequence of this result is the fol-
lowing: If the frequencies are not resonant, then
the phase of the ith oscillator does not depend on
the phase of the jth one. Therefore, such oscillators
cannot lock; They cannot even influence each other
(because hij = const), even when they are inter-
connected (gij 6= const). We see that in order to in-
teract, it is not enough to have physical connection
between two oscillators, they must also establish a
certain low-order resonance relation between their
frequencies. We refer to such interactions as being
Frequency Modulated (FM).

3.5.1. Damped subthreshold oscillation

Let us illustrate the major point of the FM interac-
tion theory using weakly connected neurons near
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Andronov–Hopf bifurcation, which we considered
at the end of Sec. 2.2. Each such neuron exhibits
damped subthreshold oscillation of membrane po-
tential with some frequency ωi. A canonical model
for a weakly connected network (18) of such neurons
has the form [Aronson et al., 1990; Hoppensteadt
& Izhikevich, 1996, 1997]

żi = (εai + iωi)zi ± zi|zi|2 + ε
n∑
j=1

cijzj .

It is similar to (13). The change of variables

zi =
√
εvie

iωit , vi ∈ C , i = 1, . . . , n ,

results in the system

v̇i = ε

aivi ± vi|vi|2 +
n∑
j=1

cije
i(ωj−ωi)tvj

 ,

which could easily be averaged.
If ωj 6= ωi, then the highly oscillatory term

cije
i(ωj−ωi)tvj vanishes after averaging, and the vari-

able vj does not participate in the ith equation.
Hence the phase of the jth neuron cannot influence
that of the ith neuron. Such neurons do not inter-
act even though xj and xi are physically connected
provided that gij 6= const in (18). In contrast, if
ωj = ωi, then

cije
i(ωj−ωi)tvj = cijvj

survives the averaging. Hence the jth variable par-
ticipates in the ith equation.

We see that the existence of physical connec-
tions between two oscillators, which are accounted
by the function gij(xi, xj), does not guarantee that
the oscillators can influence each other. There
should also be certain relation between their fre-
quencies, e.g. ωj = ωi + O(ε), or else the physical
connections are not effective.

Having a low-order resonant relation, e.g.
ωj = 2ωi, is not enough here because periodic ac-
tivity at an Andronov–Hopf bifurcation does not
have noticeable harmonics or subharmonics. How-
ever, it is usually enough far away from the bifur-
cation, since the limit cycle becomes distorted and
periodic activity acquires significant harmonics and
subharmonics.

3.5.2. Fast subthreshold oscillation

If a neuron exhibits fast subthreshold oscillation of
its membrane potential, then its response to a brief

strong input may depend on the amplitude and tim-
ing of the input, as we discussed in Sec. 2.4.

Now suppose the input is weak, so that it never
evokes an action potential, but can modulate the
subthreshold oscillation, e.g. by changing its phase,
so that the neuron would react differently to a fu-
ture strong pulse. From the FM interaction theory
it follows that the phase of subthreshold oscillation
can be affected only by those neurons that fire with
a certain resonant frequency. By changing the fre-
quency of the subthreshold limit cycle, the neuron
can control the set of the presynaptic neurons that
can modulate its dynamics.

3.5.3. Spiking oscillations

Now consider two periodically spiking neurons.
From the FM interaction theory it follows that the
neurons communicate only when there is a low-
order quasiresonance relation between their firing
frequencies. Thus, a neuron can turn off and on
its connection with the other neurons simply by
changing the frequency of spiking without changing
the synaptic efficacy. The entire brain can rewire
itself dynamically without changing the synaptic
hardware.

One can argue that studying periodically spik-
ing neurons could have a questionable biological
value because neurons do not fire periodic spike
trains. They do, however, when they are in the
bursting regime, as we describe in the next section.
In Sec. 4.6 we show how the theory of FM interac-
tions helps to understand synchronization proper-
ties of weakly connected bursters.

4. Bursting

So far we have considered spiking mechanisms as-
suming that all parameters of the neuron are fixed.
From now on we drop this assumption and consider
neural systems of the form

ẋ = f(x, u) , (20)

where u represents slowly changing parameters in
the system.

Quasistatic Bifurcation Parameter. We treat
u from (20) as being a vector of quasistatic bifurca-
tion parameters that control neural behavior. The
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Fig. 43. Parameter u in (20) can control spiking behav-
ior. When u changes slowly, the neuron can exhibit bursting
behavior.

neuron can be excitable, bistable, or spiking de-
pending on the value of u; see Fig. 43.

If u visits the spiking and quiescent areas pe-
riodically, the neuron exhibits periodic bursting be-
havior. During each burst the neuron can fire many
spikes or just a doublet or a triplet, depending on
the period of time parameter u spends in the spiking
area relative to the period of a single spike.

There could be many causes for periodic activ-
ity of u, as shown in Fig. 43. The simplest one
is when u has a limit cycle attractor that is (rela-
tively) independent of the value of x. We refer to
such bursters as slow wave periodic bursters.

In general, u may not have a periodic attrac-
tor for any fixed value of x. In fact, it could al-
ways converge to an equilibrium for all relevant x;
see Fig. 44. However, the location of the equilib-
rium may depend on x, which would cause periodic
bursting.

Usually, the value of u depends strongly on the
current state x(t): Repetitive firing of x pushes u
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Fig. 44. A neural system may exhibit slow wave periodic
bursting even when the parameter u in (20) has an equilib-
rium dynamics for any fixed x.

outside the spiking area, which results in termina-
tion of firing. If, in addition, quiescent x pushes
u outside the resting area, then u visits the spik-
ing and quiescent areas periodically, and the neu-
ron exhibits hysteresis loop periodic bursting. The
parameter u may be a scalar in this case. If qui-
escent x does not push u beyond the bistable area,
then the neuron exhibits burst excitability : It has
quiescent excitable dynamics, but its response to
perturbations is not a single spike, but a burst of
spikes, as we illustrate in Fig. 45.

4.1. Fast slow bursting

We say that a neuron is a fast–slow burster if its
bursting behavior can be described by a singularly
perturbed system of the form

ẋ = f(x, u) (Fast Spiking)

u̇ = µg(x, u) (Slow Modulation)
(21)

where µ� 1 represents the ratio of time scales be-
tween spiking and modulation. Vector x ∈ Rm de-
scribes relatively fast processes associated with gen-
eration of action potentials, and u ∈ Rk describes
relatively slow processes that modulate x. Consid-
ering dynamics of x and u separately constitutes
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Perturbation

Fig. 45. Burst excitability in the Morris–Lecar model with
an additional slow subsystem; see bottom of Fig. 43.

the method of dissection of neural bursting [Rinzel
& Lee, 1987], or of quasistatic state approximation
[Hoppensteadt, 1993].

We say that the burster is “m + k” when the
fast subsystem is m-dimensional and the slow sub-
system is k-dimensional. In this paper we provide
many examples of “2 + 1” and “2 + 2” bursters.

4.1.1. Classical singular perturbation theory

Asymptotic theory of singularly perturbed dynam-
ical systems is well-developed [Hoppensteadt, 1993;
Mishchenko et al., 1994] and one would expect to
find methods to analyze fast–slow bursters of the
form (21). However, the basic assumption of the
theory that the fast subsystem has only equilibrium
dynamics, is violated when the neuron starts to fire
periodically. Thus, the entire bulk of theory is help-
less in studying fast–slow bursting. (An exception is
the Pontryagin’s problem, which is related to “fold
cycle/fold cycle” bursting; see Sec. 7 in [Mishchenko
et al., 1994]).

4.1.2. Averaging

One can try to use averaging to get some insight
into the behavior of the system (21). This approach
was used successfully, e.g. by Rinzel and Lee [1986],
Pernarowski et al. [1992], Smolen et al. [1993] and
Baer et al. [1995].

Let x(t) = x(t, u) be a solution of the fast sub-
system when u = const. Using it in the slow sub-
system results in

u̇ = µg(x(t, u), u) ,

which can be reduced to

ẇ = µg(w) (22)

by a near-identity change of variables w = u+o(µ).
Here

g(w) = lim
T→∞

1

T

∫ T

0
g(x(t, w), w)dt

is the average of g. Unfortunately, many problems
may arise when u passes slowly bifurcation values.
For example, the period of x(t, u) may go to infin-
ity, as happens in Class 1 systems, or transients may
take as long as 1/µ units of time, or the averaged
system (22) is not Lipchitz. In all these cases the
straightforward averaging discussed above fails. We
provide an example when we discuss “Hopf/Hopf”
hysteresis loop bursting.

4.1.3. Equivalent voltage

If a neural model exhibits bistable behavior, then
the function g in (22) is not single-valued, but it has
layers (sheets) similar to those depicted in Fig. 43.
This is the result of the averaging that removes
completely the fast dynamics. To study possible
hysteresis behavior we need to retain at least one
“fast” variable. This is always possible in the fol-
lowing important class of fast–slow bursters

ẋ = f(x, u)

u̇ = µg(h(x), u)
(23)

where h : Rm → R is an arbitrary function, e.g. the
membrane voltage at state x. Notice that the image
of h is a scalar.

If the slow variable is a scalar too, then for any
value of u there is a (possibly nonunique) value of
another scalar, v, such that g(v, u) = g(u), where
g(u) is the averaged function defined above. We
refer to v as being the equivalent voltage [Bertram
et al., 1995]. It allows to reduce (23) to the two-
dimensional system of the form

v̇ = s(v, u)

u̇ = µg(v, u)
(24)

where g is exactly the same as in (21), and
s : R2 → R is some function that can be found
numerically. Its set of zeroes often has the N -shape
depicted in Fig. 46. If (23) describes a hysteresis
loop periodic burster, then system (24) is a relax-
ation oscillator. Thus, most of the results regard-
ing synchronization of coupled relaxation oscillators
can be applied to coupled bursters.

4.2. Classification

Below we provide a classification scheme for peri-
odic fast–slow bursting. Any such bursting involves
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Fig. 46. The set of zeroes of function s in (24) often has an
N-shape.

at least two bifurcations (see Fig. 2):

• Bifurcation of the quiescent state leading to
repetitive spiking.
• Bifurcation of the repetitive spiking leading to the

quiescent state.

There could also be other bifurcations, which do not
switch between the rest and spiking states. Since
there are 12 relevant codimension 1 bifurcations of
the quiescent state and 10 relevant codimension 1
bifurcations of the spiking state, there are 120 dif-
ferent types of codimension 1 bursters; see Table 4.

We refer to a burster as being planar when the
fast subsystem is two-dimensional, i.e. the burster is
“2+k”. This imposes severe restriction on possible
bifurcations. In particular, there are only 24 various
types of planar codimension 1 fast–slow bursters,
which are summarized in Table 3. We emphasize
planar bursters because they have a greater chance
to be encountered in computer simulations.

Various bursters can be combined into groups
depending on the nature of quiescent and spiking
state at the bifurcations. If the quiescent state
is a stable equilibrium and the spiking state is a
limit cycle attractor, then we say that the burster is
point-cycle. A cycle–cycle burster occurs when the
quiescent state is a small amplitude, “subthresh-
old” limit cycle attractor. Similarly, point–torus
and cycle–torus bursters are when the spiking state
is quasiperiodic. A point–point bursting is discussed
in Sec. 4.5. It occurs when the parameter µ in (21)
is not small enough. A cycle–point bursting is also
feasible, but we do not discuss it here.

4.2.1. What is the name?

We face a challenging problem: How to label all
those bursters? We want self-explanatory names

that are easy to remember and understand. Thus,
we should not number them [Bertram et al., 1995],
since it would lead, e.g. to bursters of Type XXVII,
Type LXIII, Type LCXVI, etc. We cannot use de-
scriptions such as “elliptic”, “parabolic”, “hyper-
bolic”, “triangular”, “rectangular”, etc., since they
are misleading. Instead, we base our nomenclature
on the names of the two bifurcations involved. Still,
many bifurcations have multiple names. For exam-
ple, a fold bifurcation is also known as saddle–node,
tangent, or limit point bifurcation. Whenever pos-
sible we choose the shortest name. For example,
we refer to the saddle–node on invariant circle bi-
furcation (also known as fold or saddle–node on
limit cycle) as just a circle bifurcation, partially
because it is the only codimension 1 bifurcation of
a circle flow. We refer to an Andronov–Hopf bi-
furcation, also known as Poincaré–Andronov–Hopf,
as just Hopf when it is supercritical and subHopf
when it is subcritical. Our results are summarized
in Table 4. For example, the famous “square-wave”
(Type I) burster is a “fold/homoclinic” burster ac-
cording to our classification, because the rest state
disappears via fold bifurcation and the limit cycle
attractor disappears via saddle homoclinic orbit bi-
furcation; see Fig. 59.

4.3. Planar point cycle bursting

In this section we give examples of planar point–
cycle bursters. For this we add slow subsystems
to some well-known neural models, such as Morris–
Lecar, that have sufficiently rich bifurcation struc-
ture. The easiest way to get bursting is to take
a two-dimensional slow subsystem having a “slow
wave” (subcellular) limit cycle attractor that inter-
sects the desired bifurcation curves of a fast (spik-
ing) subsystem. All such bursters are “2 + 2”.
This is a classical approach to obtain the “cir-
cle/circle” (“parabolic”) bursting [Ermentrout &
Kopell, 1986a, 1986b]. We show, however, that each
burster can be of hysteresis loop type with only one
slow variable, although finding an example of such
“2 + 1” bursting is more difficult.

For the sake of convenience, we provide a list of
references to relevant illustrations in Table 5.

4.3.1. Slow wave bursting

Consider the four types of planar point–cycle burst-
ing that are depicted in the upper left corner of
Table 4. All of them can be generated by a



Table 4. A classification of codimension 1 fast–slow bursters. See also Figs. 53 and 126.

Saddle–Node Saddle Fold Saddle Focus Focus Focus Fold Cycle on
on Invariant Homoclinic Supercritical Limit Subcritical Subcritical Homoclinic Homoclinic Blue-sky Homoclinic

Bifurcations Circle Orbit Andronov–Hopf Cycle Flip Neimark–Sacker Orbit Orbit Catastrophe Torus

Fold fold/ fold/ fold/ fold/ fold/ fold/ fold/ fold/ fold/ fold/
circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus

homoclinic homoclinic

Saddle–Node circle/ circle/ circle/ circle/ circle/ circle/ circle/ circle/ circle/ circle/
on Invariant circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Circle homoclinic homoclinic

Supercritical Hopf/ Hopf/ Hopf/ Hopf/ Hopf/ Hopf/ Hopf/ Hopf/ Hopf/ Hopf/
Andronov– circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Hopf homoclinic homoclinic

Subcritical subHopf/ subHopf/ subHopf/ subHopf/ subHopf/ subHopf/ subHopf/ subHopf/ subHopf/ subHopf/
Andronov– circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Hopf homoclinic homoclinic

Fold fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/ fold cycle/
Limit circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Cycle homoclinic homoclinic

Saddle homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/
Homoclinic circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Orbit homoclinic homoclinic

1
2
0
4



Subcritical flip/ flip/ flip/ flip/ flip/ flip/ flip/ flip/ flip/ flip/
Flip circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus

homoclinic homoclinic

Subcritical Sacker/ Sacker/ Sacker/ Sacker/ Sacker/ Sacker/ Sacker/ Sacker/ Sacker/ Sacker/
Neimark– circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Sacker homoclinic homoclinic

Saddle Focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus saddle–focus

Homoclinic homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/
Orbit circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus

homoclinic homoclinic

Focus Focus focus–focus focus–focus focus–focus focus–focus focus–focus focus–focus focus–focus focus–focus focus–focus homoclinic/

Homoclinic homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ homoclinic/ torus
Orbit circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky

homoclinic homoclinic

Blue Sky blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/ blue-sky/
Catastrophe circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus

homoclinic homoclinic

Fold Cycle on torus/ torus/ torus/ torus/ torus/ torus/ torus/ torus/ torus/ torus/
Homoclinic circle homoclinic Hopf fold cycle flip Sacker saddle–focus focus–focus blue-sky torus
Torus homoclinic homoclinic

Planar Point-TorusPoint-Cycle Cycle-Cycle Cycle-Torus

1
2
0
5
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Table 5. A list of figure numbers.

Saddle–Node Saddle Fold
on Invariant Homoclinic Supercritical Limit

Bifurcations Circle Orbit Andronov–Hopf Cycle

Fold 47, 61, 87 47, 59, 60, 86 63 68, 87

Saddle-Node 47, 49, 47, 62, 87 67 64, 65, 66

on Invariant 52, 56, 57,

Circle 58, 87

Supercritical 72 71 48, 83, 48, 75

Andronov–Hopf 84, 85

Subcritical 73, 74, 87 69, 70, 87 48, 76, 77 48, 78,

Andronov–Hopf 80, 82

Fold Limit 98 97 99 93, 94, 96

Cycle

Saddle 92 88, 89 90 92

Homoclinic
Orbit

Fold/Circle
("triangular")

Circle/Circle
("parabolic")

Fold/Homoclinic
("square-wave")

Circle/Homoclinic

ci
rc

le
fo

ld

homoclinic

Fig. 47. A neural system near saddle–node separatrix loop
bifurcation (see Fig. 22) can exhibit four different types of
fast–slow bursting.

system near a saddle–node separatrix loop bifur-

cation that we discussed in Sec. 2.3. Indeed, the
two-dimensional vector of bifurcation parameters

can slowly cross the bifurcation curves depicted in
Fig. 22. The type of bursting would depend on the

location of the slow limit cycle; see Fig. 47.

Similarly, a system near a Bautin bifurca-
tion can exhibit four types of bursting when the

bifurcation parameters a and b in topological nor-
mal form (12) change slowly; see Fig. 48.

The figures illustrate an important issue: Many
bursters, such as “circle/homoclinic”, “fold/circle”,
“Hopf/fold cycle”, and “subHopf/Hopf”, may in-
volve more than two bifurcations. For example, the
“circle/homoclinic” bursting from Fig. 47 exhibits
a fold bifurcation during the spiking stage. The bi-
furcation does not turn the spiking off, but it gives
birth to a stable rest state and a saddle, which will
participate in the saddle homoclinic orbit bifurca-
tion that turns the spiking off.

Since there can be many other bifurcations of
the quiescent and spiking state besides those re-
sponsible for onset and termination of the spiking
phase, the latter two do not define the type of burst-
ing uniquely, but rather specify a large class, which
may have subtypes.

4.3.2. Hysteresis loop bursting

The vector of bifurcation parameters in Figs. 47
and 48 has a slow limit cycle attractor. There-
fore all those bursters are of the slow wave type.
One can easily make the “fold/homoclinic” and the
“subHopf/fold cycle” bursters to be of hysteresis
loop type by taking advantage of the bistability
of attractors.
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Fig. 48. A neural system near Bautin bifurcation can ex-
hibit four different types of fast–slow bursting.

Contrary to the biophysical folklore, any
burster can be of hysteresis loop type with one-
dimensional slow variable. Indeed, consider the
fast–slow hysteresis loop depicted on the left-hand
side of Fig. 49. It is customary to refer to the upper
(lower) branch as being the up-state (down-state)
of a neuron [Wilson, 1993; Wilson & Kawaguchi,
1996]; see Fig. 50. While the fast variable moves
along the up-state, the slow variable may cross some
bifurcation curves so that the equilibrium may bi-
furcate into a limit cycle, and then back to the

Rest

Spiking

x�

u

Saddle-Node on Invariant
Circle Bifurcation

Fold
Bifurcation

Fold
Bifurcation

Up-State
(Rest)

Down-State
(Rest)

f(x,u)=0
�

g(x,u)=0

Fig. 49. “Circle/circle” (“parabolic”) hysteresis loop peri-
odic bursting with one-dimensional slow variable: The rest
(up-)state disappears via saddle–node on invariant circle bi-
furcation; the spiking limit cycle disappears via another
saddle–node on invariant circle bifurcation; the hysteresis be-
havior occurs due to the coexistence of the up- and down-
states. See also Fig. 49.

equilibrium, thereby producing a burst of spikes; see
Fig. 51. We depicted the well-known “circle/circle”
(“parabolic”) bursting on the right-hand side of
Fig. 49 to illustrate the issue. The bursting is not of
slow wave type, but of hysteresis loop type (“2+1”);
see also Fig. 52. In Fig. 53 we show that all planar
point–cycle bursters can be of hysteresis loop type.

4.3.3. Point–Point hysteresis loops

We refer to the hysteresis loop depicted in Fig. 49 as
being a point–point hysteresis loop because it con-
sists of two branches of equilibria corresponding to
the up-state and down-state. Such a two-state be-
havior is exhibited by planar systems having null-
clines intersected as in Fig. 54. Notice that the fast
nullcline is not cubic but quintic; that is, it has two
local maxima and minima. This usually reflects fast
activation dynamics of two inward currents hav-
ing different activation thresholds, e.g. transient
low-threshold calcium current and the orthodox
sodium current [Rush & Rinzel, 1994] or two differ-
ent calcium currents. Such a system can have five
equilibria.

The transitions between the up- and down-
states do not have to occur exclusively via fold
bifurcations. They can also occur via subcriti-
cal Andronov–Hopf bifurcations. Hence, there are
four different point–point hysteresis loops, which we
summarize in Fig. 55. One can modify the dynam-
ics on the upper branch so that it has a window
of periodic spiking activity, which would lead to a
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Fig. 50. Intracellular recordings of spontaneous activity of neostriatal spiny cells reveal two-state behavior. Notice that only
the up-state is excitable. (Courtesy of Charles Wilson, University of Tennessee.)
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Fig. 51. Modification of dynamics on the upper branch of
the point–point hysteresis loop: The slow variable crosses
bifurcation curves, creates a window of periodic spiking ac-
tivity, and results in bursting behavior.

hysteresis loop bursting, as in Fig. 51. For exam-
ple, one can put two “circle” bifurcations on the
upper branch of any of the hysteresis loops, as we
do in Fig. 56, and get four different subtypes of
the “circle/circle” bursting. Similarly, one can have

four subtypes of “circle/Hopf”, “Hopf/circle”, and
“Hopf/Hopf” hysteresis loop bursters.

A remarkable fact is that the point–point hys-
teresis loops themselves can exhibit bursting behav-
ior despite the fact that there are no stable limit cy-
cles. This happens when the small parameter µ in
(21) is not small enough, as we discuss in Sec. 4.5.

Considering point–point hysteresis loops raises
the following issue: The spiking state during the ac-
tive phase of bursting might be irrelevant to what
the cell is doing. For example, the pancreatic β-
cells secrete insulin while they are in the up-state
regardless whether their membranes produce spikes
or not. Similarly, neurons without axons, such as
granule cells in the olfactory bulb, or with short
axons, such as many interneurons, may not need
spikes to activate synaptic transmission. A mere
transition to the up-state may be enough to trig-
ger release of neurotransmitter. Even if such cells
exhibit bursting dynamics, their essential neuro-
computational features might depend only on the
type of the hysteresis loop. In contrast, if a bursting
neuron has a long axon, then it might need prop-
agating spikes to trigger synaptic transmission in
distant synapses. In this case it is important to
understand the mechanism of initiation and termi-
nation of repetitive spiking during the burst.

4.3.4. “Circle/circle” (“parabolic”) bursting

The transition from quiescent state to repetitive
spiking and back occurs via a saddle-node on in-
variant circle bifurcation; see Fig. 47. Since the
frequency of emerging and terminating spiking
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Fig. 52. “Circle/circle” (“parabolic”) bursting via “fold/fold” hysteresis loop: The transition from quiescent state to repetitive
spiking and back occurs via a saddle–node on invariant circle bifurcation. The transitions between the down-state (lower
branch) and the up-state (upper branch) occur via fold bifurcations. Shown are simulations of the Morris–Lecar system with
two additional low-threshold currents: Inward current as in Fig. 62 and an outward current IR(V, u) = 0.2(1 + tanh{(V +
0.3)/0.1})u4(Ek − V ). The other parameters and variables are as in Fig. 62 except I = −0.067 and µ = 0.0025.
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Fig. 53. Examples of planar point–cycle fast–slow codimension 1 bursters of hysteresis loop type.
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Fig. 54. Possible intersections of nullclines in planar system v′ = f(v, w), w′ = µg(v, w) that would result in the two-state
behavior depicted in Fig. 50 with only the up-state being excitable (notice the blue periodic pseudo-orbits). Here v and w are
the voltage and recovery variables, respectively.
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Fig. 57. The interspike period in the “circle/circle” bursting
resembles a parabola, which motivates the name “parabolic
bursting”.

behaves as
√
λ, where λ is the distance to the bifur-

cation, the interspike period “looks” like a parabola
(see Fig. 57), which motivates the name “parabolic
bursting”. Such a bursting is exhibited by the
R15 cells in the abdominal ganglion of the mollusk
Aplysia and it has been studied by many scien-
tists, including Plant [1981], Rinzel and Lee [1987],
Ermentrout and Kopell [1986a, 1986b], Canavier
et al. [1991], Bertram [1993], Baer et al. [1995],
Bertram et al. [1995], Soto-Trevino et al. [1996], and
Butera et al. [1996, 1997], Hoppensteadt [1997], and
Taylor and Holmes [1998].

Under fairly general conditions, any slow wave
“circle/circle” burster can be transformed to the
Ermentrout–Kopell canonical model [Ermentrout &
Kopell, 1986a, 1986b; Hoppensteadt & Izhikevich,
1997]

ϑ̇ = 1− cos ϑ+ (1 + cos ϑ)r(ψ)

ψ̇ = ω

where r : S1 → R is some function that depends on
particulars of the burster, e.g. r(ψ) = cos ψ. When
r(ψ) < 0, the cell is quiescent; When r(ψ) > 0,
it fires periodically; see Fig. 58. As was shown by
Soto-Trevino et al. [1995], the slow subsystem does
not need a limit cycle attractor to exhibit periodic
bursting; it might be just excitable; see detailed dis-
cussion in Sec. 8.2.3 by Hoppensteadt and Izhike-
vich [1997].

As we discussed above, there can be at least
four subtypes of hysteresis loop “circle/circle”
bursting having one-dimensional slow variable
(i.e. “2 + 1” bursting); see Figs. 52 and 56.

Saddle-Node on
Invariant Circle
Bifurcation

θ

ψ

Saddle-Node on
Invariant Circle

BifurcationSpiking

Rest

Fig. 58. “Circle/circle” (“parabolic”) slow wave bursting.
Variables θ, ψ ∈ S1.

4.3.5. “Fold/homoclinic” (“square-wave”)
bursting

The rest state disappears via fold bifurcation,
and the periodic spiking disappears via saddle-
homoclinic orbit bifurcation; see Fig. 47. Since
there is a coexistence of attractors, such bursting
occurs via “fold/homoclinic” hysteresis loop; see
Fig. 59. It is often referred to as being “square-
wave” bursting due to the voltage amplitude profile;
see however Fig. 123.

This type of bursting is exhibited by pancre-
atic β-cells; see [Chay & Keizer, 1983; Pernarowski
et al., 1992] and references therein. It is ubiquitous
in many systems [Alexander & Cai, 1991] including
Hindmarsh and Rose [1984] model [Wang, 1993],
Chay–Cook [Bertram et al., 1995] model, and the
reduced Morris–Lecar model

V̇ = I − gl(V −El)− gkw(V −Ek)

− gCam∞(V )(V −ECa)

ẇ = λ(V )(w∞(V )− w)

(25)

where

m∞(V ) =
1

2

(
1 + tanh

V − V1

V2

)

w∞(V ) =
1

2

(
1 + tanh

V − V3

V4

)

λ(V ) =
1

3
cosh

V − V3

2V4
.

We assume I(u) = −u and use a linear slow
subsystem

u̇ = µ(0.2 + V ) (26)
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Fig. 59. “Fold/homoclinic” (“square-wave”) bursting: The rest state disappears via fold bifurcation and the limit cycle dis-
appears via saddle homoclinic orbit bifurcation. The same bifurcations form the “fold/homoclinic” hysteresis loop. (Modified
from [Hoppensteadt & Izhikevich, 1997].) Simulations of the Morris–Lecar system (25) with slow equation (26). Parameters:
(V1, V2, V3, V4, El, Ek, ECa, gl, gk, gCa) = (−0.01, 0.15, 0.1, 0.05, −0.5, −0.7, 1, 0.5, 2, 1.2) and µ = 0.005.
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to obtain “fold/homoclinic” bursting depicted in
Fig. 59, as well as many other types. Mathe-
matical aspects of “fold/homoclinic” bursting have
been studied by Terman [1991] who showed that
the burster could have a Smale horseshoe structure
leading to chaotic dynamics.

When the two bifurcations occur for nearby
values of the slow variable, the fast subsystem is
near saddle–node separatrix loop bifurcation; see
Sec. 2.3. Under fairly general conditions on the dy-
namics of the slow subsystem, the burster can be
transformed into the canonical model

ϑ̇ = 1− cos ϑ+ (1 + cos ϑ)u

u̇ = µ
(27)

where each spike resets ϑ to a and decreases u by a
constant b; i.e.

ϑ(t)← a and u(t)← u(t)− b

as soon as ϑ(t) = π. The canonical model exhibits
“fold/homoclinic” hysteresis loop periodic bursting
for any 0 < a < π, any b > 0 and sufficiently small
µ; see Fig. 60.

4.3.6. “Fold/circle” (“triangular”) bursting

The quiescent state disappears via fold bifurcation,
and the periodic limit cycle attractor correspond-
ing to repetitive spiking disappears via saddle–node
on invariant circle bifurcation; see Figs. 47 and 61.
Such bursting has been studied by Rush and Rinzel
[1994] in a thalamic neuron model, and it is referred
to as being “triangular” bursting [Wang & Rinzel,
1995].

The bursting can occur via “fold/fold” hys-
teresis loop, as we depict in Fig. 61, or via
“fold/subHopf” hysteresis loop (not shown).

4.3.7. “Circle/homoclinic” bursting

The quiescent state disappears via saddle–node on
invariant circle bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spiking
disappears via saddle homoclinic orbit bifurcation;
see Figs. 47 and 62. Such a bursting can also oc-
cur via “subHopf/homoclinic” hysteresis loop (not
shown).

4.3.8. “Fold/Hopf” (“tapered”) bursting

The rest state disappears via fold bifurcation, and
the periodic spiking disappears via supercritical
Andronov–Hopf bifurcation; see Fig. 63. Such
bursting, also known as “tapered”, was studied by
Holden and Erneux [1993a, 1993b] in the context of
slow passage through the supercritical Hopf bifur-
cation. It is exhibited by pancreatic β-cell mod-
els [Smolen et al., 1993; Pernarowski, 1994; de
Vries, 1998] and by coupled Hindmarsh–Rose neu-
rons [Abarbanel et al., 1996]. It can occur via
“fold/fold” hysteresis loop, as depicted in Fig. 63,
or via any other point–point hysteresis loop from
Fig. 55.

4.3.9. “Circle/fold cycle” bursting

The rest state disappears via saddle–node on invari-
ant circle bifurcation, and the periodic spiking dis-
appears via fold limit cycle bifurcation. It can occur
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Fig. 60. Typical bursting solution of (27). Parameters: a = 1, b = 0.1, and µ = 0.01.
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Fig. 61. “Fold/circle” (“triangular”) bursting via “fold/fold” hysteresis loop: The rest state disappears via fold bifurcation,
and the repetitive spiking disappears via saddle–node on invariant circle bifurcation. Simulations of the Morris–Lecar system
(25) with parameters as in Fig. 59 and an additional slowly inactivating low-threshold current IT(V, u) = 0.1|u|(1+tanh{(V −
V5)/0.1})(ECa − V ) where V5 = −0.5, u′ = µλ(V )(−0.5− V ) and µ = 0.01.
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Fig. 63. “Fold/Hopf” (”tapered”) bursting via “fold/fold” hysteresis loop: The rest state disappears via fold bifurcation,
and the repetitive spiking disappears via supercritical Andronov–Hopf bifurcation. Simulations of (15) with slow subsystem
ċ = µv. Parameters: (a, b, d, ε, µ) = (−1.55, 2.5, 0.1, 0.5, 0.01).
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Fig. 64. “Circle/fold cycle” bursting via “fold/fold cycle” hysteresis loop: The rest state disappears via saddle–node
on invariant circle bifurcation, and the repetitive spiking disappears via fold limit cycle bifurcation. See also Figs. 65
and 66.
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Fig. 65. “Circle/fold cycle” bursting via “subHopf/fold cycle” hysteresis loop: The rest state disappears via saddle–node on
invariant circle bifurcation, and the repetitive spiking disappears via fold limit cycle bifurcation.
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via “fold/fold cycle hysteresis loop, as depicted in
Fig. 64, or via “subHopf/fold cycle” hysteresis loop
as depicted in Figs. 65 and 66.

4.3.10. “Circle/Hopf” bursting

The quiescent state disappears via saddle–node bi-
furcation on invariant circle, and the periodic limit
cycle attractor corresponding to repetitive spiking
shrinks to a point via supercritical Andronov–Hopf
bifurcation. It can occur via “fold/fold” hystere-
sis loop as we depict in Fig. 67, or via any other
point–point hysteresis loop from Fig. 55.

4.3.11. “Fold/Fold cycle” bursting

The quiescent state disappears via fold bifurcation,
and the periodic limit cycle attractor correspond-
ing to repetitive spiking disappears via fold limit
cycle bifurcation; see Fig. 68. Such a bursting was
first discovered in Chay–Cook model by Bertram

et al. [1995], who referred to it as being a Type IV
bursting.

4.3.12. “SubHopf/homoclinic” bursting

The quiescent state disappears via subcritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spik-
ing disappears via saddle homoclinic orbit bi-
furcation. The bursting can occur via “fold/
homoclinic” hysteresis loop, see Fig. 69, or via
“subHopf/homoclinic” hysteresis loop as depicted
in Fig. 70.

4.3.13. “Hopf/homoclinic” bursting

The quiescent state disappears via supercritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spik-
ing disappears via saddle homoclinic orbit bifurca-
tion. The bursting can occur via “fold/homoclinic”
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Fig. 66. “Circle/fold cycle” bursting via “subHopf/fold cycle” hysteresis loop (see Fig. 65) in the Morris–Lecar system (25)
with slow subsystem u̇ = µ(0.1 + V ). Parameters gCa = 1.36, V4 = 0.16, µ = 0.003, the rest as in Fig. 59.
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Fig. 68. “Fold/fold cycle” (Type IV) bursting: The quiescent state disappears via fold bifurcation, and the periodic spiking
disappears via fold limit cycle bifurcation. The same bifurcations form the “fold/fold cycle” hysteresis loop. Shown are
simulations of the Wilson–Cowan [1972] model with parameters as in [Hoppensteadt & Izhikevich, 1997, Fig. 2.12], and
rx(u) = −4.76 + u, ry = −9.7 + 0.3u, where u̇ = µ(0.5− x) is a slow subsystem, µ = 0.1.
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Fig. 69. “SubHopf/homoclinic” bursting via “fold/homoclinic” hysteresis loop: The quiescent state disappears via subcritical
Andronov–Hopf bifurcation, and the periodic spiking disappears via saddle homoclinic orbit bifurcation. Simulations of the
Morris–Lecar model. Parameters gCa = 0.9, V4 = 0.04, V3(u) = 0.08 − u, I(u) = 0.08 − 0.03u, where u̇ = µ(0.22 + V ) and
µ = 0.003, the rest as in Fig. 59.



1224 E. M. Izhikevich

Rest

Spiking

Saddle Homoclinic
Orbit Bifurcation

"SubHopf/Homoclinic" Bursting

Subcritical
Andronov-Hopf
Bifurcation

Saddle Homoclinic
Orbit Bifurcation

�

Fig. 70. “SubHopf/homoclinic” bursting: The quiescent state disappears via subcritical Andronov–Hopf bifurcation, and the
periodic spiking disappears via saddle homoclinic orbit bifurcation. The same bifurcations form the “subHopf/homoclinic”
hysteresis loop.

hysteresis loop, as shown in Fig. 71, or via “sub-
Hopf/homoclinic” hysteresis loop (not shown).

4.3.14. “Hopf/circle” bursting

The quiescent state disappears via supercritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spiking
disappears via saddle–node on invariant circle bi-
furcation. The bursting can occur via “fold/fold”
hysteresis loop as shown in Fig. 72, or via any other
point–point hysteresis loop from Fig. 55.

4.3.15. “SubHopf/circle” bursting

The quiescent state disappears via subcritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spiking
disappears via saddle–node on invariant circle bi-
furcation. The bursting can occur via “fold/fold”
hysteresis loop as we illustrate in Fig. 73, or via
“subHopf/fold” hysteresis loop; see Fig. 74.

4.3.16. “Hopf/fold cycle” bursting

The quiescent state disappears via supercritical
Andronov–Hopf bifurcation, and the periodic limit

cycle attractor corresponding to repetitive spik-
ing disappears via fold limit cycle bifurcation; see
Fig. 75. The bursting can also occur via “sub-
Hopf/fold cycle” hysteresis loop (not shown).

4.3.17. “SubHopf/Hopf” bursting

The quiescent state loses stability via subcritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spiking
shrinks to a point via supercritical Andronov–Hopf
bifurcation. The bursting can occur via “fold/fold”
hysteresis loop (Fig. 76) or “subHopf/fold” hystere-
sis loop (Fig. 77).

4.3.18. “SubHopf/fold cycle”
(“Elliptic”) bursting

The quiescent state loses stability via subcritical
Andronov–Hopf bifurcation, and the periodic limit
cycle attractor corresponding to repetitive spiking
disappears via fold limit cycle bifurcation, as we il-
lustrate in Fig. 78.

When the two bifurcations occur for nearby
values of the slow variable, the fast subsystem is
near Bautin bifurcation, and the burster has a local
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Fig. 71. “Hopf/homoclinic” bursting via “fold/homoclinic” hysteresis loop: The quiescent state disappears via supercritical
Andronov–Hopf bifurcation, and the periodic spiking disappears via saddle homoclinic orbit bifurcation. Simulations of the
Morris–Lecar model. Parameters as in Fig. 69, but V4 = 0.02 and µ = 0.01.
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Fig. 72. “Hopf/circle” bursting via “fold/fold” hysteresis loop: The quiescent state disappears via supercritical Andronov–
Hopf bifurcation, and the periodic spiking disappears via saddle–node on invariant circle bifurcation.
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Fig. 73. “SubHopf/circle” bursting via “fold/fold” hysteresis loop: The quiescent state disappears via subcritical Andronov–
Hopf bifurcation, and the periodic spiking disappears via saddle–node on invariant circle bifurcation. Simulations of the system
from Fig. 61 with V3(u) = −0.135 + 0.3u and µ = 0.005.
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Fig. 74. “SubHopf/circle” bursting via “subHopf/fold” hysteresis loop: The quiescent state disappears via subcritical
Andronov–Hopf bifurcation, and the periodic spiking disappears via saddle–node on invariant circle bifurcation.

canonical model [Izhikevich, 2000a]

ż = (u+ iω)z + 2z|z|2 − z|z|4

u̇ = µ(a− |z|2)
(28)

where z ∈ C and u ∈ R are the canonical fast and
slow variables, respectively, and a, ω and µ� 1 are
parameters. The canonical model exhibits hystere-
sis loop periodic point–cycle bursting behavior for
0 < a < 1; see Fig. 79. The bursting is frequently
called “elliptic” due to the profile of the spiking
amplitude.

Such a bursting occurs in rodent trigeminal in-
terneurons [Del Negro et al. 1998], and it is exhib-
ited by the FitzHugh–Rinzel model [Rinzel, 1987,
see Figs. 80 and 81), Rush–Rinzel model [1994],
Chay–Cook model [Bertram et al., 1995], Wu–Baer
[1998] model, and Pernarowski [1994] polynomial
model [de Vries, 1998]. Synchronization behavior
of weakly connected “subHopf/fold cycle” bursters
is scrutinized by Izhikevich [2000a]. We discuss it
in Sec. 4.6.

Finally, the spiking limit cycle may not sur-
round the rest state, as we illustrate in Fig. 82.

4.3.19. “Hopf/Hopf” Bursting

The rest state loses stability via supercritical
Andronov–Hopf bifurcation, and the limit cycle at-
tractor corresponding to repetitive spiking shrinks
to a point also via supercritical Andronov–Hopf bi-
furcation; see Figs. 83. The bursting can occur
via “fold/fold” hysteresis loop as we illustrate in
Fig. 84, or via any other point–point hysteresis loop
from Fig. 55.

When the quiescent state is the only attractor
of a neural system, then one might assume that
“Hopf/Hopf” bursting can only be of slow wave
type; that is, the slow subsystem should be at
least two-dimensional having a slow wave limit cy-
cle (“2 + 2” bursting). However, there is an exam-
ple of “2+1” hysteresis loop periodic “Hopf/Hopf”
bursting having unique attractor for any value of
the slow variable [Hoppensteadt & Izhikevich, 1997,
Sec. 2.9.4]; see Fig. 85 and detailed discussion by
Izhikevich [1998].

Let us elaborate. Even though there is no coex-
istence of attractors at the supercritical Andronov–
Hopf bifurcation, there may be a hysteresis loop due
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Hopf bifurcation, and the periodic spiking disappears via supercritical Andronov–Hopf bifurcation.
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Fig. 81. Slow passage effect and premature reentry in the FitzHugh–Rinzel model of “subHopf/fold cycle” bursting. The
latter likely contributes to the apparent irregularity of bursting (from [Izhikevich, 2000a]).
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√
µ/20 and S(ρ) = 1/(1 + e−ρ). The hysteresis loop is due to the slow passage effect, not

due to the coexistence of attractors (from [Hoppensteadt & Izhikevich, 1997]). This burster is “2 + 1”.

to the phenomenon knows as ramp effect, memory
effect, or effect of slow passage through the bifur-
cation [Nejshtadt, 1985; Baer et al., 1989; Holden
& Erneux, 1993a, 1993b; Arnold et al., 1994]. The
mechanism of supercritical elliptic bursting having
one-dimensional slow subsystem can be explained as
follows: When x is close to a rest state, the variable
u increases and passes slowly through the bifurca-
tion value. Due to the slow passage, the fast vari-
able x remains to be close to the rest equilibrium
even after u passed the bifurcation value. After a
while x diverges from the rest potential and starts
to oscillate, in which case u decreases (relatively
quickly) and passes through the bifurcation in the
opposite direction thereby completing the hysteresis
loop, as in the upper-left corner of Fig. 85.

One should be warned though that the slow
passage effect is very sensitive to nonsmoothness of
the system and to noise. Thus, however ubiquitous
this type of bursting can be in computer simula-
tions, it may never be encountered experimentally.

The example of hysteresis loop “Hopf/Hopf”
bursting depicted in Fig. 85 shows how cautious
one should be when averaging bursting systems.

Indeed, if the fast subsystem has a unique attractor,
and the slow subsystem is one-dimensional, then the
averaged system (22) is one-dimensional, and hence
cannot oscillate. Therefore hysteresis loop periodic
bursting in (21) is impossible. This argument fails
because (22) describes accurately (21) on the time
scale of order 1/µ or less, unless other restrictions
are imposed. But the time required for convergence
of x(t) to the unique attractor might be larger than
1/µ due to the slow passage effect. Moreover, the
averaged system (22) is not Lipchitz since x(t, u)
behaves like

√
u near the Andronov–Hopf bifurca-

tion point u = 0. Thus, not only (22) is a bad
approximation to (21), but also it has nonunique so-
lutions. Therefore, averaging fails to provide good
intuition for such bursting.

4.3.20. Subtypes

Let us use the “fold/homoclinic” bursting to illus-
trate the issue raised by Bertram et al. [1995]: The
large amplitude limit cycle attractor correspond-
ing to periodic spiking may encompass the qui-
escent state, which happens, e.g. during the big



1236 E. M. Izhikevich

0 500 1000 1500
2

1.5

1

0.5

0

0.5

1

1.5

2

Fold
Bifurcation

Spiking

V(t)

Fold Big Saddle
Homoclinic Orbit

"Fold/BIG Homoclinic" Bursting

Big Saddle
Homoclinic Orbit
Bifurcations

Rest

Fig. 86. “Fold/big homoclinic” (“square-wave”) bursting: The rest state disappears via fold bifurcation and the limit cycle
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Fig. 88. “Homoclinic/homoclinic” cycle–cycle bursting: The transitions between quiescent and spiking limit cycles occur via
saddle homoclinic orbit bifurcations. The same bifurcations form the hysteresis loop. Simulations of (15) with a(u) = −u,
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Fig. 89. “Homoclinic/homoclinic” cycle–cycle bursting: The transitions between quiescent and spiking limit cycles occur via
saddle homoclinic orbit bifurcations, which form a hysteresis loop.

saddle homoclinic orbit bifurcation; see Figs. 32 and
86. Bertram et al. [1995] suggested to refer to such
“fold/homoclinic” bursting as being Type Ib, as op-
posed to “regular” Type Ia. The “fold/big homo-
clinic” bursting is not an exception: Other bursters
may have the same property, as we illustrate in
Fig. 87. Even though the new types are equiva-
lent to the old ones from the purely mathematical
point of view, it may still be useful to distinguish be-
tween them, since they might have different neuro-
computational properties.

Finally, the distinction may have limited value
when the fast subsystem has dimension 3 and up,
since the notions surround or in between may not
be well defined there.

4.4. Planar Cycle cycle bursting

Next, we give examples of some cycle–cycle planar
bursters.

4.4.1. “Homoclinic/homoclinic” bursting

The transitions from quiescent to spiking limit
cycles and back occur via saddle homoclinic orbit
bifurcations; see Figs. 88 and 89.

4.4.2. “Homoclinic/Hopf” bursting

The quiescent limit cycle disappears via saddle ho-
moclinic orbit bifurcation and the spiking limit cy-
cle shrinks to a point via supercritical Andronov–
Hopf bifurcation; see Fig. 90.

4.4.3. “Homoclinic/fold cycle” bursting

The quiescent limit cycle disappears via saddle ho-
moclinic orbit bifurcation and the spiking limit cy-
cle disappears via fold limit cycle bifurcation; see
Fig. 91.

4.4.4. “Homoclinic/circle” bursting

The quiescent limit cycle disappears via saddle ho-
moclinic orbit bifurcation and the spiking limit cy-
cle disappears via saddle–node on invariant circle
bifurcation; see Fig. 92.

4.4.5. “Fold cycle/fold cycle” bursting

The transitions between quiescent and spiking limit
cycle attractors occur via fold limit cycle bifurca-
tions; see Figs. 93 and 94. This is the only type of
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Fig. 90. “Homoclinic/Hopf” cycle–cycle bursting via “homoclinic/fold” hysteresis loop: The quiescent oscillation disappears
via saddle homoclinic orbit bifurcation and the periodic spiking disappears via supercritical Andronov–Hopf bifurcation.
Simulations of (15) with a(u) = −0.77 − 0.33u/(u + 0.15), b(u) = 1.65 + u, c = −0.15 + u, d = 0.1, ε = 1, slow subsystem
u̇ = µv and µ = 0.01.
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cycle–cycle bursting for which rigorous asymptotic
theory exists [Mishchenko et al., 1994]. “Fold
cycle/fold cycle” bursting can be seen in the
Hodgkin–Huxley-like models by Shorten and Wall
[2000] and Wang [1993]. The latter also exhibits
“fold cycle/flip” bursting.

An easy way to make a simple example of “fold
cycle/fold cycle” burster is to take any standard
relaxation system

ṙ = f(r, u)

u̇ = µg(r, u)

having N -shaped fast nullcline that intersects the
slow nullcline at one point (see Fig. 95) and assume
that r is the amplitude of fast oscillation. The vari-

able z(t) = r(t)eiωt would exhibit “fold cycle/fold
cycle” hysteresis loop bursting. Thus, most of the
results devoted to studying synchronization prop-
erties of relaxation oscillators (see e.g. [Belair &
Holmes, 1984; Storti & Rand, 1986; Grasman, 1987;
Somers & Kopell, 1993, 1995; Kopell & Somers,
1995; Terman & Wang, 1995; Terman & Lee, 1997;
Izhikevich, 2000b]) can immediately be generalized
to that of “fold cycle/fold cycle” bursters.

There is a relationship between the “fold
cycle/fold cycle” and “subHopf/fold cycle”
(“elliptic”) bursting: When the latter has a fast
subsystem near Bautin bifurcation and it receives
weak time-dependent input, it is described by the
canonical model [Izhikevich, 1999]

ṙ = b+ r + 2r3 + r5

ϕ̇ = ω

u̇ = µ(a− r2)

(29)

where z = reiϕ ∈ C, which coincides with (28) when
b = 0. Its typical “fold cycle/fold cycle” bursting
solution is depicted in Fig. 96.
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Fig. 96. A typical “fold cycle/fold cycle” bursting solution of (29). Parameters: a = 0.5, b = 0.1, ω = 3, µ = 0.1.
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furcation. The same bifurcations form the hysteresis loop.

4.4.6. “Fold cycle/homoclinic” bursting

The quiescent oscillation disappears via fold limit
cycle bifurcation and the spiking oscillation disap-
pears via saddle homoclinic orbit bifurcation; see
Fig. 97.

4.4.7. “Fold cycle/circle” bursting

The quiescent oscillation disappears via fold limit
cycle bifurcation and the spiking oscillation disap-
pears via saddle–node on invariant circle bifurca-
tion; see Fig. 98.

4.4.8. “Fold cycle/Hopf” bursting

The quiescent oscillation disappears via fold limit
cycle bifurcation and the spiking oscillation shrinks
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Fig. 98. “Fold cycle/circle” bursting via “fold cycle/fold”
hysteresis loop: The quiescent state disappears via fold limit
cycle bifurcation and the spiking state disappears via saddle–
node on invariant circle bifurcation.

to a point via supercritical Andronov–Hopf bifurca-
tion; see Fig. 99.

4.5. Intermediate µ

The basic idea behind the dissection of the fast–
slow bursting is that the relaxation parameter µ in
(21) is as small as we wish so that the slow vari-
able u may be assumed to be static on the fast time
scale. In practice, µ may not be infinitesimal, but
may assume intermediate values; e.g. µ = 0.1 in



1244 E. M. Izhikevich

x�

u

Rest

Fold Limit
Cycle
Bifurcation

Spiking

"Fold Cycle/Hopf" Bursting

Fold
Bifurcation

Supercritical
Andronov-Hopf

Bifurcation
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Figs. 68 and 79 and µ = 0.01 in many other illustra-
tions. The theory developed above is valid for in-
termediate µ as well. However, one should be care-
ful, since many counterintuitive phenomena can oc-
cur when µ is not “sufficiently” small (how small is
“sufficient” depends on details of the model under
consideration). In particular, a fast-intermediately
slow system can exhibit bursting behavior even
when the fast subsystem does not have periodic at-
tractor for any value of the slow variable. There are
two mechanisms that could lead to such a bizarre
behavior. We consider them below.

4.5.1. Modulated excitability

Consider a system having nullclines as in the top
left corner of Fig. 100. Such a system has a unique
attractor — a stable equilibrium, and the solution
always converges to it. Suppose the system depends
on a slow variable I which controls the vertical po-
sition of the N -shaped nullcline. If I increases, the
nullcline moves up slowly, and so does the solu-
tion because it tracks the equilibrium. However,
if the increasing rate is not slow enough, the so-

lution starts to oscillate with a large amplitude.
Thus, the system exhibits spiking behavior even
though it does not have a limit cycle attractor for
any fixed I. Similarly, a system having a unique
globally asymptotically stable attractor — a limit
cycle (see top right corner of Fig. 100) may exhibit
low amplitude quiescent behavior when the nullcline
moves down.

In all these cases studying the behavior of the
fast subsystem for fixed values of the slow vari-
able may not provide adequate information when
the slow variable is allowed to evolve. One should
consider the full fast–slow system.

Indeed, consider the case of equilibrium dynam-
ics in Fig. 100. The globally asymptotically stable
equilibrium is excitable for any fixed value of I. It
has a periodic pseudo-orbit depicted in Fig. 101.
Suppose I is fixed or increases sufficiently slow. If a
perturbation moves the solution to point p, then the
solution runs along the orbit, exits through point q,
and stays in a small neighborhood of the equilib-
rium until the next strong perturbation. This cor-
responds to a single spike. In contrast, if I increases
faster, then the exit point q becomes the entry point
p by the time the solution completes the rotation.
Thus, the spike starts again, and so on.

This dynamical mechanism is closely related
to the mechanism of accommodation and anodal
break excitation, and combined with appropriate
dynamics of the slow variable I it may lead to
bursting behavior. Sivan et al. [1995] refer to
this phenomenon as modulated excitability. Neuro-
computational properties of such a burster would
depend on the type of excitability of the equilib-
rium, which in turn depends on the bifurcation the
equilibrium is near. Thus, one can still use the
classification described above to classify such fast-
intermediately slow bursters.

4.5.2. Point–point bursters

Consider the four hysteresis loops depicted in
Fig. 55. If the rate of attraction to the up-state
is relatively weak in comparison with the magni-
tude of µ, then the fast variable spends most of its
time converging to the equilibrium. Whenever the
convergence is of the form of damped oscillations,
the system’s behavior resembles bursting, as we il-
lustrate in Figs. 102 and 103 using the “fold/fold”
and “fold/subHopf” hysteresis loops. We refer to
such bursters as being point–point bursters. The
remaining “subHopf/fold” and “subHopf/subHopf”
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Fig. 100. Left: The system has a unique attractor — equilibrium, yet it can exhibit repetitive spiking activity when the N-
shaped nullcline is moved up. Right: The system has a unique attractor — limit cycle, yet it can exhibit low amplitude quiescent
activity when the N-shaped nullcline is moved down. Simulations of the Bonhoeffer–Van Der Pol oscillator ẋ = I+x−x3/3−y,
ẏ = ε(x+ a) for ε = 0.1, a = 1.05 (left) or a = 0.9 (right), and İ = µ.

point–point bursters are illustrated elsewhere. It
is remarkable that periodic bursting may occur de-
spite the fact that the fast subsystem does not have
a limit cycle attractor for any value of the slow
variable.

It is believed that the “fold/subHopf” hystere-
sis loop point–point bursting is exhibited by the
pituitary somatotroph cells, which secrete growth
hormone [A. Sherman & A. LeBeau, personal
communication].

4.6. Synchronization of bursters

In this section we consider a weakly connected sys-
tem of the form

ẋi = fi(xi, ui) + εpi(x, u, ε) (30)

u̇i = µ[gi(xi, ui) + εqi(x, u, ε)] (31)

where x = (x1, . . . , xn) ∈ Rmn and u =
(u1, . . . , un) ∈ Rkn are vectors of the fast and slow
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Pol oscillator from Fig. 100 having (excitable) asymptoti-
cally stable equilibrium; i.e. a piece of solution starting from
a point p and exiting at a nearby point q.

variables, respectively, and ε� 1 is the strength of
connections. We assume that each subsystem

ẋi = fi(xi, ui)

u̇i = µgi(xi, ui)

exhibits periodic hysteresis loop bursting behav-
ior. We also assume that the coupling is relatively
strong in comparison with the magnitude of µ; that
is,

µ = O(ε) ,

which also includes the case µ � ε. The case of
extremely weak coupling (µ� ε) is not interesting
for our discussion here.

There are two rhythmic processes associated
with each burster: repetitive spiking and repeti-
tive bursting. Therefore, there could be at least
two different regimes of synchronization, which are
depicted in Fig. 104:

• Synchronization of individual spikes.
• Synchronization of bursts.

One of them does not imply the other. Of course,
there is an additional regime when both types of
synchronization occur simultaneously.

4.6.1. Spike synchronization

A naive approach to study spike synchronization
is to consider the fast subsystem (30), which is

a weakly connected network of limit cycle oscil-
lators. In Sec. 3.5 we show that the oscillators
cannot lock unless they have nearly equal or low-
order resonant frequencies. Thus, synchronization
of individual spikes within a single burst depends
crucially on the interspike frequencies. The fre-
quencies, however, may vary substantially during
the burst, because they depend on the values of
the slow variables u1, . . . , un. A rigorous averag-
ing theory for such systems is quite complicated
[Arnold, 1982].

Spike synchronization may occur during the en-
tire duration of a burst, or during the initial or the
final stage of the burst. We present a nonrigorous
discussion of these cases below.

4.6.1.1. Initial stage

Spike synchronization during the initial stage of
the burst usually does not occur between “circle/*”
bursters (where “*” means a wildcard) because
of the following two reasons: (i) The interspike
frequency changes substantially during the initial
stage. Hence, small deviations in the values of the
slow variables may lead to drastic variances in the
frequencies. (ii) The canonical model for Class 1
systems (11) does not exhibit stable locking. Sim-
ilar arguments can be applied to the “blue-sky/*”
and “torus/*” bursters.

The other types of bursters tend to have reg-
ular spiking during the initial stage of a burst.
Therefore, they could exhibit spike synchronization.
However, the convergence to the synchronized state
takes as many as O(1/ε) spikes, and can be longer
than the entire initial stage.

4.6.1.2. Final stage

Using nonrigorous arguments similar to those pre-
sented above, one can conclude that “*/circle”,
“*/blue-sky”, and “*/torus” bursters do not usu-
ally exhibit spike synchronization during the final
stage of the burst.

The case of “*/* homoclinic” bursting is sub-
tler. The interspike frequency decreases as the func-
tion 1/| ln λ| (see Table 2), which does not seem to
vanish unless the distance to the bifurcation, λ, is
very small. Hence, the sudden drop in the inter-
spike frequency occurs during the last few spikes,
which may lead to their desynchronization, as one
can see in Fig. 106.
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Spike Synchronization

Burst Synchronization

Fig. 104. Various regimes of synchronization of bursters
(modified from [Izhikevich, 2000a]).

4.6.2. Burst synchronization

Dynamics of burst synchronization of weakly cou-
pled bursters is similar in some aspects to that of
strongly coupled relaxation oscillators.

To understand the mechanism of stable burst
synchronization we consider two planar point–cycle
bursters: One in the active (spiking) state, and
the other still in the quiescent down-state. If the
active burster makes the quiescent burster jump
from the down-state prematurely, then they may
exhibit stable burst synchronization. If it prolongs
the quiescent down-state, then the in-phase burst
synchronization cannot be stable, but some other
regime, such as anti-phase burst synchronization,
may occur.

We distinguish two mechanisms that lead to
stable burst synchronization depending on whether
the quiescent burster is an integrator or a resonator.

4.6.2.1. Integrators

If point–cycle bursting occurs via “fold/*” hys-
teresis loop, then the burster acts as an integra-
tor. While the slow variable is near the bifurcation
value, the fast variable is ready to jump up in re-
sponse to incoming pulses from the active burster.
This jump may lead to repetitive spiking when the

Rest

Spiking

Excitatory 
Stimulation

Inhibitory 
Stimulation

Fig. 105. Excitatory (inhibitory) pulses shorten (lengthen)
the quiescent state in “fold/*” hysteresis loop bursters. This
may lead to burst synchronization (desynchronization).

bursting is of “fold/*” type, or to the up-state when
the bursting is of “circle/*” or “Hopf/*” type. In
any case the jump shortens the quiescent phase.

If the synaptic connections are excitable, the
quiescent burster does jump prematurely. The
higher the frequency of the incoming pulses,
the sooner it jumps. In contrast, if the connec-
tions are inhibitory, the quiescent down-state is pro-
longed; see Fig. 105.

Shortening the quiescent state is necessary but
not sufficient condition for stable synchronization.
The latter has yet to be found; It will depend on
the bifurcation of the spiking state, and probably be
similar to the compression hypothesis in the Fast
Threshold Modulation (FTM) theory of synchro-
nization of strongly connected relaxation oscillators
[Somers & Kopell, 1993, 1995]: The rate of change
of slow variable before the jump is less than that
after the jump. In this case the bursters may be-
have according to a simple rule excitation means
synchronization, inhibition means desynchroniza-
tion, as we illustrate in Fig. 106.
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Inhibitory Coupling
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Spike
De-Synch-
ronization

Fig. 106. Burst synchronization and desynchronization in
“fold/homoclinic” (“square-wave”) bursters. Shown are sim-
ulations of coupled Morris–Lecar systems with additional
slow variables.

4.6.2.2. Resonators

If point–cycle bursting occurs via “subHopf/*” hys-
teresis loop, then the burster acts as a resonator in
the quiescent down-state. Such a burster exhibits
damped subthreshold oscillations of the membrane
potential, see Sec. 2.2. If the frequency of the in-
coming pulses is resonant with the frequency of the
subthreshold oscillation, then the quiescent burster
jumps up prematurely, which may result in stable
in-phase burst synchronization. The lower the order
of resonance is, the sooner it jumps, as we illustrate
in Fig. 107. If the input pulse train is not resonant,
the quiescent down-state is not affected.

A seemingly counterintuitive observation is
that the sign of synapse does not affect burst syn-
chronization, but may only affect spike synchroniza-
tion, as we illustrate in Fig. 108. This observation
agrees with the fact that a resonator can fire in re-
sponse to excitatory as well as inhibitory pulse, as
we discuss in Sec. 2.2. Therefore, in contrast to

1:2  Resonance�

3:8  Resonance�

No  Resonance�

1:4  Resonance�

Fig. 107. The response of the “SubHopf/fold cycle”
(“elliptic”) burster (black) depends on the frequency of the
incoming pulses (red). Lower-order resonances produce ear-
lier responses. Shown are simulations of excitatory coupled
FitzHugh–Rinzel bursters [Izhikevich, 2000a].

the previously discussed case, both excitation and
inhibition can lead to burst synchronization.

4.6.3. Delayed onset of bursting

There is an interesting phenomenon that is ubiqui-
tous in computer simulations of bursters but may
never be encountered in experiments: The onset of
bursting can be delayed significantly when the vari-
able u passes slowly a bifurcation value. That is,
the fast variable remains quiescent despite the fact
that the slow variable has already crossed the bi-
furcation value and the quiescent state has already
become unstable or disappeared. Because such a
quiescence is highly unstable, small perturbations
from the other bursters can cause an immediate
transition to the active state, which may result in
instantaneous synchronization.

There are two different but related mechanisms
for such a delay.

4.6.3.1. Slow passage effect

First, consider the case when the quiescent state
loses stability, e.g. via an Andronov–Hopf bifurca-
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Fig. 108. The type of synaptic connection does not af-
fect burst synchronization in coupled “SubHopf/fold cycle”
(“elliptic”) bursters. It affects only the spike synchronization,
which is in-phase for excitatory synapses and anti-phase for
inhibitory synapses. Shown are simulations FitzHugh–Rinzel
bursters [Izhikevich, 2000a].
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Fig. 109. Slow passage through Andronov–Hopf bifurcation.
(Modified from [Hoppensteadt & Izhikevich, 1997].)

tion. When the rest state becomes unstable, the
fast variable still needs some time to diverge from
the equilibrium, which can be significant, as we il-
lustrate in Fig. 109. We encounter this phenomenon
when we consider “Hopf/Hopf” and “SubHopf/fold
cycle” bursting. The slow passage effect can also be
observed near Neimark–Sacker bifurcation.

The slow passage effect is very sensitive to
whether or not the system is analytical [Nejshtadt,
1985]. Many mathematical models of bursters are
analytical, and hence they exhibit such an effect in
computer simulations. However, the effect can be a
mathematical artifact, since it has yet to be seen in
experiments.

The slow passage effect can be shortened
significantly by noise or weak input from other
bursters. The latter provides a powerful mecha-
nism for instantaneous synchronization of bursters
even when they have essentially different interburst
frequencies. For example, a pair of “SubHopf/fold
cycle” bursters from Fig. 79 can synchronize in-
phase instantaneously (if coupled) because the
slower burster spends half of the quiescent time near
the unstable equilibrium and is ready to fire in re-
sponse to the very first pulse coming from the faster
burster.

4.6.3.2. French duck (canard) solutions

When a relaxation system has nullclines intersected
as in Fig. 110, it may have a so-called French duck
(canard) periodic solution [Eckhaus, 1983]. After
the fast variable reached the left knee point, it does
not jump to the right branch, but stays near the
unstable middle branch for some time. Similar phe-
nomenon may occur in “fold/*”, “fold cycle/*”, and
“*homoclinic/*” bursters [Booth et al., 1997], as we
illustrate in Fig. 111. The fast variable stays near
the unstable state for some time before jumping to
the limit cycle attractor. A necessary condition for
such a delayed quiescence is that the slow subsys-
tem has an equilibrium near the bifurcation value.
That is, the manifold of equilibria of the slow sub-
system depicted as a yellow plane in Fig. 111 should
pass near the left knee point.

The fast variable near the unstable branch is
highly susceptible to small perturbations, e.g. those
coming from the other bursters. An excitable spike
can make it fire, resulting in instantaneous synchro-
nization. In contrast, an inhibitory spike can make
it jump to the lower (stable) branch, thereby delay-
ing the onset of bursting even further.
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Fig. 110. French duck (canard) solutions in relaxation
systems.
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Fig. 111. The onset of bursting is delayed in the
“fold/homoclinic” (“square-wave”) burster due to the French
duck (canard) phenomenon.

Since French duck solution exists in a narrow
range of parameters [Arnold et al., 1994], and it is
sensitive to noise, it is not clear whether the phe-
nomenon of delayed onset of bursting can occur in
real cells.

Similarly, we do not discuss here the phe-
nomenon of delayed transition to the quiescent
state, which occurs in “*/homoclinic” bursters as
we illustrate in Fig. 112. A tiny transition delay can
be seen in almost all simulations of “*/homoclinic”
bursters presented in this paper. A significant de-
lay may even affect synchronization properties of
bursters in computer simulations, but it is also un-
likely to be encountered in real cells.

"Fold/Homoclinic" Bursting

x�

u

Fold
Bifurcation

Rest

Spiking

Saddle
Homoclinic

Orbit
Bifurcation

Delayed
Transition

Fig. 112. Delayed transition to the quiescent state during
“fold/homoclinic” bursting.

4.6.4. Rate of locking

The rate of convergence to attractors in weakly con-
nected networks is very slow; namely, it is of or-
der ε � 1, where ε is the strength of connections
[Hoppensteadt & Izhikevich, 1997]. For example, a
weakly connected oscillatory network (18) needs as
many as O(1/ε) spikes to synchronize2 regardless
of whether each element is a smooth or a relax-
ation oscillator. This is the major source of crit-
icism of weakly connected models, since the slow
rate of convergence contradicts some experimental
observations. For example, the CPG behavior in
the lamprey is characterized by a strong rate of con-
vergence to attractor (see e.g. [Kopell, 1995; Somers
& Kopell, 1995; Williams & Sigvardt, 1995]), but it
is modeled by a system of phase equations which is
a canonical model for weakly connected oscillators.

Our analysis of weakly connected bursters sug-
gests that the discrepancy in rates of convergence is
not due to the assumption of weakness of connec-
tions, but due to the assumption that each segment

2Under synchronization we mean here convergence to a small but finite neighborhood of an appropriate attractor, which takes
O(1/ε) units of time. Complete convergence to the attractor is an asymptotic process that requires infinite amount of time,
unless the system is non-Lipchitz or the initial state is on the attractor.
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of lamprey spinal cord can be modeled by an oscil-
lator. If we model it by a burster, which it is, then
the rate of convergence to an attractor looks “fast”
compared to the interburst period despite the fact
that the bursters are weakly connected. Indeed, it
takes O(1/ε) spikes to produce O(1) changes in the
activity of a postsynaptic burster, but there could
be as many as O(1/µ) spikes in each burst. If ε and
µ are of the same order, then one or two bursts are
usually enough for locking. Another way to explain
this is to note that locking of two bursters requires
O(1/ε) units of time, but each burst lasts O(1/µ)
units. Therefore, locking may look instantaneous
on the time scale of interburst intervals, especially
when µ� ε.

5. Other Types

In this section we briefly mention bursters that can-
not be described by the fast–slow system (21). We
distinguish three cases: Periodic, quasiperiodic, and
chaotic bursting behavior.

5.1. Periodic bursting: Hedgehog
limit cycles

Periodic bursting often arises when a system has
hedgehog-like limit cycle attractor depicted in
Fig. 113. We refer to such a burster as being hedge-
hog burster. Many fast–slow bursters considered in
the previous section have periodic dynamics with
the hedgehog attractor when µ is small, and they
persist as hedgehog bursters when µ is intermediate
or large.

Hedgehog bursting can be exhibited even by
two-dimensional systems, e.g. those having twisted
fast nullclines; see Fig. 114. Following are two
hedgehog cases.

5.1.1. Blue-sky catastrophe

The hedgehog attractor can also arise when a neu-
ral system is near blue-sky catastrophe (Fig. 30)
with the fold limit cycle bifurcation in the spiking
area of the phase space. Indeed, the vector field
is directed along the disappeared cycle, hence the
solution spends most of its time rotating around it
thereby firing spikes; see Fig. 115. The system ex-
hibits periodic bursting behavior, although it can-
not be decomposed into fast and slow subsystems
of the form (21). Hence such bursting is not of the
fast–slow type.

5.1.2. Saddle–focus homoclinic orbit

Now consider a neural system near a saddle–focus
homoclinic orbit bifurcation; see top of Fig. 30.
Under certain fairly general conditions found by
Shilnikov (see [Kuznetsov, 1995]) the saddle–
focus has secondary homoclinic orbits that can
bifurcate (via secondary saddle–focus homoclinic
bifurcations) into stable cycles corresponding to
doublets, triplets, etc., see Fig. 116.

This is the mechanism of a generation of com-
plex spikes in the FitzHugh–Nagumo partial differ-
ential equation [Hastings, 1976; Evans et al., 1982;
Feroe, 1982], and it may be related to the mecha-
nism of bursting in the LP cell of the lobster stom-
atogastric ganglion [Guckenheimer et al., 1997].

5.2. Quasiperiodic bursting

A continuous rhythmic signal x(t) is quasiperiodic if
there is a continuous function q(θ1, . . . , θk), which
is 2π-periodic in each argument, such that

x(t) = q(ω1t, . . . , ωkt) , for all t ≥ 0 ,

where Ω = (ω1, . . . , ωk)
> ∈ Rk is a frequency vector

[Samoilenko, 1991; Izhikevich, 1999a]. Quasiperi-
odic activity corresponds to a torus attractor, and
it often looks like bursting or spindles waves; see
Fig. 117. Its shape depends on the function q and
the frequency vector Ω.

The torus attractor may appear, e.g. via su-
percritical Neimark–Sacker bifurcation. It can also
appear via fold limit cycle bifurcation with a homo-
clinic torus structure (Fig. 30). When the cycle dis-
appears, the system exhibits bursting behavior sim-
ilar to the “blue-sky” bursting depicted in Fig. 115.
Some additional cases are depicted in Fig. 118.

5.3. Chaotic bursting

Many chaotic signals resemble cycle–cycle bursting;
see Fig. 119. Point–cycle bursting occurs, e.g. in
the presence of Pomeau–Manneville intermittency.
Many systems near saddle–focus homoclinic orbit
bifurcation also exhibit point–cycle chaotic burst-
ing [Kuznetsov, 1995] with a Rössler-like attractor;
see Fig. 120.

On the other hand, many fast–slow bursters
have chaotic dynamics. For example, the
“fold/homoclinic” burster may have a horseshoe
structure [Terman, 1991, 1992], and hence exhibit
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Fig. 113. A hedgehog-like limit cycle attractor often corresponds to bursting behavior (from [Hoppensteadt & Izhikevich,
1997]).
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Fig. 116. Secondary homoclinic orbits to saddle–focus equilibrium can bifurcate into periodic solutions corresponding to
doublets, triplets (not shown) or bursts of spikes.
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Fig. 117. An example of a quasiperiodic signal. x(t) = sin ω1t sin ω2t with the frequency vector (ω1, ω2) = (1,
√

2/20).

"Homoclinic Torus" Bursting 

Fig. 118. “Homoclinic torus” bursting. The pattern depends on the location of the disappeared fold limit cycle (dotted blue
circle).
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Fig. 119. Solution of the Lorenz system resembles chaotic cycle–cycle bursting.
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chaotic bursting. Terman’s arguments can be
generalized to most “*/homoclinic” bursters.

6. Classification of Bursters:
Why Bother?

There are many types of distinct bursters from the
purely dynamical system point of view. Are they re-
ally so different from the neuro-computational point
of view? The answer is maybe.

Indeed, some bursters have quite unique neuro-
computational properties. For example, the
“circle/circle” (“parabolic”) bursting exhibits Class
1 neural excitability and Class 1 spiking, and it may
act as an integrator of neural signals when it oc-
curs via “fold/*” hysteresis loop. In contrast, the
“subHopf/fold cycle” (“elliptic”) burster exhibits
Class 2 neural excitability and Class 2 spiking,
and it acts as a resonator. Interactions between
such resonator bursters depend crucially on the res-
onant relations between their interspike frequen-
cies [Izhikevich, 2000a]; they can exhibit spike syn-
chronization, burst synchronization, or both. In
contrast, “circle/circle” bursters do not have well-
defined interspike frequencies, and hence are reluc-
tant to exhibit spike synchronization.

Thus, different bursters can communicate, syn-
chronize, and process information differently. How-
ever, we cannot exclude the case when a pair of
distinct bursters has identical neuro-computational
properties, since there are so many bursters [see
Table 4], and so little information about their
behavior.

6.1. How to distinguish bursters?

Since different bursters may have different neuro-
computational properties, it is important to have
criteria to distinguish them experimentally. The
least useful, but probably the most common way,
is to browse through this paper and try to find
a picture that “resembles” micro-electrode record-
ings under consideration. This might be a com-
plete waste of time since two identical bursters may
look quite different (Fig. 121) or two quite dis-
tinct bursters may look “similar”; compare “cir-
cle/circle” bursting in Fig. 57 and “fold/big homo-
clinic” bursting in Fig. 86.

6.1.1. Frequency of emerging/
terminating spiking

First, one should inspect the frequency of emerg-
ing and terminating spiking and compare it with

C

hR2

Fig. 121. Two topologically equivalent (via homeomorphism
h) “subHopf/fold cycle” bursters may “look” quite different
(from [Izhikevich, 2000a]).

the interspike frequency in the middle of a burst.
A significant drop of the frequency is a good in-
dicator of saddle–node on invariant circle and sad-
dle homoclinic orbit bifurcations. For example, if
we consider the planar case, then small initial fre-
quency implies “circle/*” bursting. Similarly, small
terminating frequency implies “*/circle” or “*/ho-
moclinic” bursting. If there is no significant change
in the frequency during the burst, then possible bi-
furcations are of fold or Andronov–Hopf type; see
Tables 1 and 2.

Guckenheimer et al. [1997] used heuristic ar-
guments and obtained detailed asymptotics of the
interspike frequency at the end of the burst, which
could be used to distinguish, e.g. “*/circle” from
“*/homoclinic” bursting.

6.1.2. Amplitude of emerging/
terminating spiking

A small amplitude initial or terminating spiking is a
strong indicator against fold, saddle–node on invari-
ant circle, and saddle homoclinic orbit bifurcations,
since it occurs only during Andronov–Hopf and fold
limit cycle bifurcations. However, large amplitude
spiking cannot rule out Andronov–Hopf and fold
limit cycle bifurcations, since many relaxation sys-
tems near (singular) Andronov–Hopf bifurcations
exhibit small and intermediate amplitude spiking
only in an extremely narrow region of bifurcation
parameters; see e.g. Figs. 73 and 76.

6.1.3. Damped oscillations at rest

Existence of damped subthreshold oscillation is a
strong indicator of nearness to an Andronov–Hopf
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Fig. 122. A small perturbation may exhibit damped os-
cillation even though the system is near fold bifurcation
point.

bifurcation. Its frequency is the neuron’s resonant
frequency. However, damped oscillations may exist
even for fold bifurcation provided that the dimen-
sion of the system is greater than 2; see Fig. 122.

Such an oscillation does not make the neuron
a resonator, since it occurs in a subspace tangent
to the stable manifold of the saddle–node. Increas-

ing the amplitude of the oscillation does not change
significantly the distance to the threshold manifold,
and hence does not facilitate the spike.

6.1.4. Spike undershoot

Can the presence or lack of spike undershoot be
used to distinguish different types of bursters? The
answer is NO.

It is commonly believed that the undershoot
occurs because the limit cycle attractor correspond-
ing to the repetitive spiking encompasses the equi-
librium corresponding to the quiescent state. This
indeed leads to the undershoot, but only in a two-
dimensional fast subsystem. Moreover, the under-
shoot may occur without the encompassing, as we
illustrate in Fig. 123. This suggests, in particu-
lar, that the famous “fold/homoclinic” (“square-
wave” or “Type Ia”) bursting may display under-
shoot even when the fast subsystem is planar.

If the fast system is multidimensional, then
whether the limit cycle surrounds the equilibrium

v

v v v v v

v

v(t)

v

v v v v v

v

v(t)

Fold Bifurcation� Saddle Homoclinic
Orbit Bifurcation

No Spike
Undershoot

"Fold/Homoclinic" ("Square-Wave") Bursting

Spike
Undershoot

Fold Bifurcation� Saddle Homoclinic
Orbit Bifurcation

Fig. 123. Spike undershoot in “fold/homoclinic” (“square-wave” or “Type Ia”) bursting.
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v

Subcritical
Andronov-Hopf�

Bifurcation�

Fold Limit
Cycle

Bifurcation�

v(t)

v v v v v

v

"SubHopf/Fold Cycle" ("Elliptic") Bursting

v

v v v v v

v
Spike
Undershoot

v(t)

Subcritical
Andronov-Hopf�

Bifurcation�

Fold Limit
Cycle

Bifurcation�

No Spike
Undershoot

Fig. 124. The absence of spike undershoot in “subHopf/fold cycle” (“elliptic”) burster when the fast subsystem is
three-dimensional.

is irrelevant. Besides, the notion “surrounds” is not
well defined in this case, since it depends on the
point of view. In Fig. 124 we illustrate the issue
and show that the “subHopf/fold cycle” bursting
may not display undershoot.

Obviously, spike undershoot depends upon the
overlapping of the orthogonal projections onto the
voltage axis of the limit cycle attractor correspond-
ing to repetitive spiking and the stable equilibrium
corresponding to the quiescent state; see Fig. 125.
Since the overlap depends exclusively on the loca-
tion of the attractors, but not on the bifurcation
mechanism leading to their appearance or disap-
pearance, spike undershoot should not be used as
an indicator of the type of neural bursting.

6.1.5. Coexistence of spiking and
quiescent states

Global coexistence of attractors may not be useful
in identifying class of bursting since any burster can
have stable quiescent and spiking states. However,
local coexistence may be useful.

V V

Rest
State

Repetitive
Spiking

Rest
State

Repetitive
Spiking

Spike Undershoot No Spike Undershoot

Fig. 125. Orthogonal projections of the limit cycle attractor
and the stable equilibrium on the voltage axis v.

Let us elaborate. Consider the “circle/circle”
bursting in Fig. 49 or 52. The spiking limit cycle at-
tractor coexists with the rest state, hence a suitable
short perturbation can shut down the spiking. The
perturbation however should be strong enough to
push the solution into the attraction domain of the
down-state. In contrast, repetitive spiking in the
“fold/homoclinic” bursting in Fig. 59 can be shut
down prematurely by a weak perturbation having
appropriate timing.

In general, repetitive spiking in any “*/homo-
clinic” and “*/fold cycle” bursting can be shut down
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prematurely by a weak stimulation, while that in
“*/circle” and “*/Hopf” cannot. Similarly, a brief
weak stimulation can evoke repetitive spiking in
“fold/*” and “subHopf/*” bursters, and cannot in
“circle/*” and “Hopf/*” bursters.

Finally, notice that testing for coexistence
of attractors is an invasive procedure that re-
quires stimulation, while the other criteria discussed
above are noninvasive because they are based only
on observations.

6.1.6. Transition from bursting to tonic
spiking or quiescence

Fine structure of a bursting pattern depends on
many physiological parameters, such as temper-
ature, concentration of extracellular ions, etc.
Changing such parameters can distort the burst-
ing pattern, and in extreme cases, can shut it down
completely or transform it to a tonic spiking. These
are interesting cases because they correspond to a
bifurcation in the behavior of the entire system.
Measuring the interspike and/or interburst inter-
vals at the bifurcation, one can in principle deter-
mine the type of bursting the system can exhibit.
Unfortunately, little is known about possible mech-
anisms of transition from bursting to tonic spiking
or quiescence, except in some special cases discussed
by Terman [1992] and Izhikevich [2000a]. Thus,
more analysis is needed before one can make sense
of those measurements.

6.1.7. Conductance based models

We have treated neurons as general dynamical sys-
tems with no restriction on the form of the right-
hand side. Now we restrict ourselves and consider
the conductance-based models of the form

V̇ = I −
n∑
i=1

gi(x)(V −Ei)

ẋ = f(V, x)

where V is the voltage, and x ∈ Rm is the vector of
conductances, gating variables, etc. Does the con-
ductance based form impose any restriction on the
possible bifurcations of the rest state or limit cycle?
Could some bifurcation always lead to spike un-
dershoot or overshoot? These are important open
problems.

7. Conclusion

In this paper we review relevant bifurcations that
are involved in the generation of action poten-
tials by neurons. The bifurcations determine ex-
citable properties of neurons, and hence their neuro-
computational features, which are summarized in
Tables 1 and 2. Table 4 classifies fast–slow bursters.
Among them only a few, shown in Fig. 126, were
identified before, the others are new.

Neurons: Integrators or resonators? The type
of bifurcation of the rest state determines the most
important neuro-computational feature of the neu-
ron: It is either an integrator or a resonator.

• Integrator. If the rest state disappears via fold
or saddle–node on invariant circle bifurcations,
then the neuron acts as an integrator; the higher
the frequency of the input, the sooner it fires.
• Resonator. If the rest state disappears via an

Andronov–Hopf bifurcation, then the neuron acts
as a resonator; it prefers a certain (resonant) fre-
quency of the input spike train that is equal to a
low-order multiple of its eigenfrequency. Increas-
ing the frequency of the input may delay or even
terminate its response.

Integrators have a well-defined threshold man-
ifold, while resonators usually do not. Integrators
distinguish between weak excitatory and inhibitory
inputs, while resonators do not, since an inhibitory
pulse can make a resonator fire. Integrators can
easily encode information about the intensity of
stimulation into their mean firing rate, whereas res-
onators cannot. In contrast, resonators are sensi-
tive to the fine temporal structure of the input spike
train, while integrators are not because they average
(integrate) it. It is curious that many investigators
tried to illustrate various aspects of sensitivity of
biological neurons to timings of spikes, such as coin-
cidence detection, using only the integrate-and-fire
model.

Another astonishing fact is that many neuro-
computational features of integrators, such as all-
or-none response and threshold manifold, have
been introduced by studying the classical Hodgkin–
Huxley model, which is a resonator, and hence does
have these features.

Bursting. All bursting neurons seem to have
similar behavior: Repetitive spiking, then quies-
cence, then spiking again, and so on. However,
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Saddle–Node Saddle
on Invariant Homoclinic Supercritical Fold Limit

Bifurcations Circle Orbit Andronov–Hopf Cycle

Fold triangular square-wave tapered Type IV

Type I Type V

Saddle–Node on parabolic

Invariant Circle Type II

Supercritical

Andronov–Hopf

Subcritical elliptic

Andronov–Hopf Type III

Fig. 126. Bifurcation mechanisms of classical bursters. See also Tables 3 and 4.

bifurcation analysis of the bursting mechanism re-
veals that seemingly similar bursters can have quite
different neuro-computational properties. Some
bursters act as integrators, others act as resonators.
The former may exhibit burst synchronization,
but could be reluctant to exhibit spike synchro-
nization, while the latter could easily do both
[Izhikevich, 2000a]. Thus, it is important to dis-
tinguish bursters.

Rigorous attempt to classify bursters started
from the seminal paper by Rinzel [1987], and it was
extended by other researchers. Bifurcation mecha-
nisms of those classical bursters are summarized in
Fig. 126. Since their naming scheme was awkward
and frequently misleading, we faced a challenging
problem to provide a novel and convenient nomen-
clature. We suggest to name bursters after the two
fundamental bifurcations involved, see Fig. 2. The
advantage of such a naming scheme is that it is self-
explanatory for most scientists.

Our classification of bursters is complete for
codimension 1 planar fast–slow bursters described
by smooth ODEs. Since there are only six rel-
evant codimension 1 bifurcations of the quiescent
state and four relevant codimension 1 bifurcations
of the spiking state on a plane, there are only 24
planar fast–slow bursters, which are summarized in
Table 3. Each of them can have subtypes depend-
ing on the type of the hysteresis loop (Fig. 55) and
whether the quiescent state is inside or outside of
the spiking limit cycle attractor.

The classification of nonplanar bursters may
still be incomplete. Indeed, we took into account all
known relevant bifurcations of codimension 1, but
there could be new bifurcations discovered in the

future, which would lead to new nonplanar bursters.
Besides, we did not consider bifurcations in piece-
wise smooth and delay systems. Finally, we pro-
vided a dozen or so examples of bursters of the
hedgehog type, but we do not have any meaning-
ful framework for their classification.
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