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We present a dynamical theory of integrate-and-fire neurons with strong
synaptic coupling. We show how phase-locked states that are stable in the
weak coupling regime can destabilize as the coupling is increased, lead-
ing to states characterized by spatiotemporal variations in the interspike
intervals (ISIs). The dynamics is compared with that of a corresponding
network of analog neurons in which the outputs of the neurons are taken
to be mean firing rates. A fundamental result is that for slow interac-
tions, there is good agreement between the two models (on an appropri-
ately defined timescale). Various examples of desynchronization in the
strong coupling regime are presented. First, a globally coupled network
of identical neurons with strong inhibitory coupling is shown to exhibit
oscillator death in which some of the neurons suppress the activity of
others. However, the stability of the synchronous state persists for very
large networks and fast synapses. Second, an asymmetric network with a
mixture of excitation and inhibition is shown to exhibit periodic bursting
patterns. Finally, a one-dimensional network of neurons with long-range
interactions is shown to desynchronize to a state with a spatially periodic
pattern of mean firing rates across the network. This is modulated by de-
terministic fluctuations of the instantaneous firing rate whose size is an
increasing function of the speed of synaptic response.

1 Introduction

There are two basic classes of neurodynamical model that are distinguished
by their representation of neuronal output activity (see Abbott, 1994, and
references therein). The first considers the output of a neuron to be a mean
firing rate that either specifies the number of spikes emitted in some fixed
time window (Hopfield, 1984; Amit & Tsodyks, 1991; Ermentrout, 1994) or
corresponds to the probability of firing within some population (Wilson &
Cowan, 1972; Gerstner, 1995). Recently, however, a number of experiments
on sensory neurons have shown that the precise timing of spikes may be
significant in neuronal information processing, and this has led to renewed
interest in the second class of neurodynamical models based on spiking
neurons. For example, spike train recordings from H1, a motion-sensitive
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neuron in the fly visual system, exhibit variability of response to constant
stimuli but a high degree of reproducibility for more natural dynamic stim-
uli (Strong, Koberle, van Steveninck, & Bialek, 1998). This reproducibility
provides an enhanced capacity for carrying information (Rieke, Warland, &
van Steveninck, 1996). Similar findings have been obtained in retinal gan-
glion cells of the tiger salamander and rabbit (Berry, Warland, & Meister,
1997). It is also well known that precise spike timing is essential for sound
localization in the auditory system of animals such as the barn owl (Carr
& Konishi, 1990). Recent advances in computational neuroscience support
the notion that synapses are capable of supporting computations based
on highly structured temporal codes (Mainen & Sejnowski, 1995; Gerstner,
Kreiter, Markram, & Herz, 1997). Moreover, this mode of computation sug-
gests how only one type of neuroarchitecture can support the processing of
several very different sensory modalities (Hopfield, 1995). Such codes are
undoubtedly important in sensory and cognitive processing. The simplest
and most popular example of a spiking neuron is the so-called integrate-
and-fire (IF) model (Keener, Hoppensteadt, & Rinzel, 1981; Tuckwell, 1988)
and its generalizations (Gerstner, 1995). The state of an IF neuron changes
discontinuously (resets) whenever it crosses some threshold and fires, so a
complete description in terms of smooth differential equations is no longer
possible. This type of model can be derived systematically from more de-
tailed Hodgkin-Huxley equations describing the process of action potential
generation (Abbott & Kepler, 1990; Kistler, Gerstner, & van Hemmen, 1997).

There are major differences in the analytical treatments of firing-rate and
spiking neural network models. A common starting point for the former
is to consider conditions under which destabilization of a homogeneous
low-activity state occurs, leading to the formation of a state with inhomo-
geneous and/or time-dependent firing rates (see, for example, Wilson &
Cowan, 1973; Ermentrout & Cowan, 1979; Atiya & Baldi, 1989; Li & Hop-
field, 1989; Ermentrout, 1998a). On the other hand, most of the work on IF
network dynamics has been concerned with the existence and stability of
phase-locked solutions, in which the neurons fire at a fixed common fre-
quency. Analysis of globally coupled IF oscillators in terms of return maps
has shown that synchronization almost always occurs in the presence of in-
stantaneous excitatory interactions (Mirollo & Strogatz, 1990). Subsequently
this result has been extended to take into account the effects of inhomo-
geneities and various synaptic and axonal delays (Treves, 1993; Tsodyks,
Mitkov, & Sompolinsky, 1993; Abbott & van Vreeswijk, 1993; van Vreeswijk,
Abbott, & Ermentrout, 1994; Ernst, Pawelzik, & Giesel, 1995; Hansel, Mato,
& Meunier, 1995; Coombes & Lord, 1997; Bressloff, Coombes, & De Souza,
1997; Bressloff & Coombes, 1998, 1999). One finds that for small transmis-
sion delays, inhibitory (excitatory) synapses tend to synchronize if the rise
time of a synapse is longer (shorter) than the duration of an action poten-
tial. Increasing the transmission delay leads to alternating bands of stability
and instability of the synchronous state. Analogous results have been ob-
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tained in the spike response model (Gerstner, Ritz, & van Hemmen, 1993;
Gerstner, 1995; Gerstner, van Hemmen, & Cowan, 1996). Traveling waves
of synchronized activity have been investigated in finite chains of IF oscilla-
tors modeling locomotion in simple vertebrates (Bressloff & Coombes, 1998),
and in two-dimensional networks where spirals and target patterns are also
observed (Chu, Milton, & Cowan, 1994; Kistler, Seitz, & van Hemmen, 1998).

In this article we present a theory of spike train dynamics in IF networks
that bridges the gap between firing-rate and spiking models. In particular,
we show that synaptic interactions that are synchronizing in the weak cou-
pling regime can become desynchronizing for sufficiently strong coupling.
The resulting dynamics is compared with the behavior of a corresponding
analog model in which the outputs of the neurons are taken to be mean
firing rates. A basic result of our work is that for slow interactions, there
is good agreement between the two models (on an appropriately defined
timescale). On the other hand, discrepancies can arise for fast synapses
where IF neurons may remain phase locked.

We take as our starting point the nonlinear mapping of the neuronal fir-
ing times and show how a bifurcation analysis of this map can serve as a
basis for understanding the extremely rich dynamical structure seen in net-
works of spiking neurons. Explicit criteria for the stability of phase-locked
solutions are derived in both the weak and strong coupling regimes by con-
sidering the propagation of perturbations of the firing times throughout a
network. In the strong coupling case, the analysis predicts regions in pa-
rameter space where instabilities in the firing times may cause transitions
to nonphase-locked states. Numerical simulations are used to establish that
in these regions, the full nonlinear firing map can support several distinct
types of behavior. For small networks, these include mode-locked bursting
states, where packets of spikes may be generated, separated by periods of
inactivity, and inhomogeneous states in which some of the oscillators be-
come inactive. For large global inhibitory networks with vanishing mean
perturbations of the firing times, we show that such bifurcations can be
suppressed, in agreement with the mode locking theorem of Gerstner et al.
(1996). As a final example of the importance of strong coupling instabilities,
we consider a ring of IF neurons with a Mexican hat interaction function.
A discrete Turing-Hopf bifurcation of the firing times from a synchronous
state to a state with periodic or quasi-periodic variations of the interspike
intervals (ISIs) on closed orbits is shown to occur in the strong coupling
regime. Further, it is shown how the separation of these orbits in phase-
space results in a spatially periodic pattern of mean firing rate across the
network.

2 Integrate-and-Fire Model of a Spiking Neuron

The standard dynamical system for describing a neuron with spatially con-
stant membrane potential V is based on conservation of electric charge, so
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that

C
dV
dt
= −F+ Is + I, (2.1)

where C is the cell capacitance, F is the membrane current, Is the sum of
synaptic currents entering the cell, and I describes any external currents. In
the Hodgkin-Huxley model the membrane current arises mainly through
the conduction of sodium and potassium ions through voltage-dependent
channels in the membrane. The contribution from other ionic currents is
assumed to obey Ohm’s law. In fact F is considered to be a function of V
and of three time-dependent and voltage-dependent conductance variables
m, n, and h,

F(V,m,n, h) = gL(V − VL)+ gKn4(V − VK)+ gNahm3(V − VNa), (2.2)

where gL, gK, and gNa are constants and VL, VK, and VNa represent the con-
stant membrane reversal potentials associated with the leakage, potassium,
and sodium channels, respectively. The conductance variables m, n, and h
take values between 0 and 1 and approach the asymptotic values m∞(V),
n∞(V) and h∞(V)with time constants τm(V), τn(V) and τh(V), respectively.

The conductance-based Hodgkin-Huxley equations depend on four dy-
namical variables. A reduction of this number is often desirable in order
to facilitate any mathematical analysis and to ease the computational bur-
den for simulations of large networks. A systematic approach for doing this
involves the use of equivalent potentials (Abbott & Kepler, 1990; Kepler, Ab-
bott, & Marder, 1992). Following this approach, one can derive an IF model,
which provides a caricature of the capacitative nature of cell membrane at
the expense of a detailed model of the refractory process. The IF model sat-
isfies equation 2.1 with F = F(V), together with the condition that whenever
the neuron reaches a threshold h, it fires, and V is immediately reset to the
resting potential V0. The dynamics of the membrane conductances m,n, h
is eliminated completely. Using a curve-fitting procedure, it is possible to
approximate F(V) by a cubic, F(V) = a(V − V0)(V − V1)(V − h) where the
constants a, V0,1, and h can be determined explicitly from the reduction of
the underlying Hodgkin-Huxley equations.

At a synapse, presynaptic firing results in the release of neurotransmitters
that causes a change in the membrane conductance of the postsynaptic
neuron. This postsynaptic current may be written

Is = gss(Vs − V), (2.3)

where V is the voltage of the postsynaptic neuron, Vs is the membrane
reversal potential, and gs is a constant. The variable s corresponds to the
probability that a synaptic receptor channel is in an open conducting state.
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This probability depends on the presence and concentration of neurotrans-
mitter released by the presynaptic neuron. Under certain assumptions, it
may be shown that a second-order Markov scheme for the synaptic chan-
nel kinetics describes the so-called alpha function response commonly used
in synaptic modeling (Destexhe, Mainen, & Sejnowski, 1994): the synaptic
response to an incoming spike at time t0 is

s(t) = s0(t− t0)e−α(t−t0), t > t0 (2.4)

for constants s0, α. Here α determines the inverse rise time for synaptic
response. If we now combine equations 2.1 and 2.3 under the approximation
F = F(V), we obtain an equation of the form (after setting C = 1)

dV
dt
= −F(V)+ I + gs

∑
m

s(t− tm)[Vs − V]. (2.5)

We are assuming that the neuron receives a sequence of action potential
spikes at times {tm} and each spike generates a synaptic response according
to equation 2.4. The neuron itself fires a spike whenever V(t) reaches the
threshold h, and V is immediately reset to the resting potential, V0. Denoting
the firing times of the neuron by {Tm}, we can view the neuron as a device
that maps {tm} → {Tm}. We introduce two additional simplifications. First,
we neglect shunting effects by setting Vs − V ≈ Vs; the possible nonlinear
effects of shunting are discussed by Abbott (1991). Second, we reduce F(V)
further by considering the linear approximation F(V) = b(V − V0) (Abbott
& Kepler, 1990). This linear IF model of a spiking neuron will be used in our
subsequent analysis of network dynamics (see sections 3 and 4). However,
before proceeding further, we briefly mention an alternative formulation of
spiking neurons based on the so-called spike response model.

The IF model assumes that it is the capacitative nature of the cell that in
conjunction with a simple thresholding process dominates the production
of spikes. The spike response (SR) model (Gerstner & van Hemmen, 1994;
Gerstner, 1995; Gerstner et al., 1996) is a more general framework that can
accommodate the apparent reduced excitability (or increased threshold) of
a neuron after the emission of a spike. Spike reception and spike generation
are combined with the use of two separate response functions. The first,
hs(t), describes the postsynaptic response to an incoming spike in a similar
fashion to the IF model, whereas the second, hr(t), mimics the effect of
refractoriness. The refractory function hr(t) can in principle be related to the
detailed dynamics underlying the description of ionic channels. In practice,
an idealized functional form is often used, although numerical fits to the
Hodgkin-Huxley equations during the spiking process are also possible
(Kistler et al., 1997). In more detail, a sequence of incoming spikes {tm}evokes
a postsynaptic potential in the neuron via Vs(t) =∑m hs(t− tm), where hs(t)
incorporates details of axonal, synaptic, and dendritic processing. The total
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membrane potential of the neuron is taken to be V(t) = Vr(t)+Vs(t), where
Vr(t) = ∑

m hr(t − Tm) and {Tm} is the sequence of output firing times.
Whenever V(t) reaches some threshold, the neuron fires a spike, and at the
same time a negative contribution hr is added to V so as to approximate
the reduced excitability seen after firing. Since the reset condition of the
IF model is equivalent to a sequence of current pulses, −h

∑
m δ(Tm), the

linear IF model is a special case of the SR model. That is, if I = 0, F(V) = −V
and we neglect shunting, then we can integrate equation 2.5 to obtain the
equivalent formulation

V(t) =
∑

m
hr(t− Tm)+

∑
m

hs(t− tm), (2.6)

where

hr(t) = −he−t, hs(t) =
∫ t

0
e−(t−t′)s(t′)dt′, t > 0, (2.7)

and there is no reset.
Most work to date on the analysis of the SR model has been based on the

study of large networks using dynamical mean field theory (Gerstner & van
Hemmen, 1994; Gerstner, 1995), which can be viewed as a generalization of
the population averaging approach of Wilson and Cowan (1972). This is dif-
ferent from the approach we take here, which is principally concerned with
the dynamics of finite networks of spiking neurons. However, we will link
the two in section 4.3, where we discuss large, globally coupled networks
and the mode-locking theorem of Gerstner et al. (1996).

3 Averaging Methods for Analyzing IF Network Dynamics

We now consider a network of IF neurons that interact via synapses by
transmitting spike trains to one another. Let Vi(t) denote the state of the ith
neuron at time t, i = 1, . . . ,N, where N is the total number of neurons in the
network. Suppose that the variables Vi(t) evolve according to the equations
(cf. equation 2.5)

dVi(t)
dt

= −Vi(t)
τd
+ Ii + Xi(t), (3.1)

where Ii is a constant external bias, τd is the membrane time constant, and
Xi(t) is the total synaptic current into the cell. We shall fix the units of time by
setting τd = 1; typical values for τd are in the range 5–20 msec. Equation 3.1
is supplemented by the reset condition that whenever Vi = h, neuron i fires
and is reset to Vi = 0. We shall set the threshold h = 1. The synaptic current
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Xi(t) is generated by the arrival of spikes from neuron j and takes the explicit
form

Xi(t) = ε
N∑

j=1

Wij

∞∑
m=−∞

J(t− Tm
j ), (3.2)

where εWij is the effective synaptic weight of the connection from the jth to
the ith neuron, J(t) determines the time course of the postsynaptic response
to a single spike with J(t) = 0 for t < 0, and Tm

j denotes the sequence
of firing times of the jth neuron with m running through the integers. We
have introduced a coupling constant ε characterizing the overall strength
of synaptic interactions. From the discussion in section 2, a biologically
motivated choice for J(t) is

J(t) = s(t− τa)2(t− τa), s(t) = α2te−αt, (3.3)

where s(t) is an alpha function (with unit normalization), τa is a discrete
axonal transmission delay, and 2 is the unit step function, 2(t) = 1 if
t > 0 and zero otherwise. The maximum synaptic response then occurs at
a nonzero delay t = τa + α−1. In a companion paper, the effects of dendritic
interactions (both passive and active) will be analyzed by taking J(t) to be
the Green’s function of some cable equation (Bressloff, 1999).

Although equations 3.1 and 3.2 are considerably simpler than those de-
scribing a network of Hodgkin-Huxley neurons, the analysis of the resulting
dynamics is still a nontrivial problem since one has to handle both the pres-
ence of delays and discontinuities arising from reset. Most work to date
has therefore been based on some form of approximation scheme. We shall
describe two such schemes: phase reduction in the weak coupling regime
and time averaging with slow synapses. In section 4 we shall then carry
out a direct analysis of the IF network dynamics without recourse to such
approximations.

3.1 Weak Coupling: Phase-Oscillator Models. We first show how in
the weak coupling limit, equation 3.1 with reset can be reduced to a phase-
oscillator equation. For concreteness, assume that Ii = I > 1 for all i =
1, . . . ,N, so that in the absence of any coupling (ε = 0), each neuron acts as
a regular oscillator by firing spikes with a constant period T = ln[I/(I− 1)].
Following van Vreeswijk et al. (1994), we introduce the phase variable ψi(t)
according to

(mod 1) ψi(t)+ t
T
= 9(Vi(t)) ≡ 1

T

∫ Vi(t)

0

dx
F(x)

, (3.4)

where F(x) = I−x for the linear IF model. (One can also apply this transform
to the nonlinear IF model discussed in section 2 with F(x) now given by a



98 Paul C. Bressloff and S. Coombes

cubic.) Under such a transformation, equation 3.1 becomes

ψ̇i(t) = RT(ψi(t)+ t/T)Xi(t), (3.5)

with

RT(θ) ≡ 1
T

1
F[9−1(θ)]

=
[
1− e−T

]
eTθ

T
(3.6)

for 0 ≤ θ < 1 and RT(θ + k) = RT(θ) for all integers k. In the absence of
any coupling, the phase variable ψi(t) is constant in time, and all oscillators
fire with their natural periods T. For weak coupling, each oscillator still
approximately fires at the unperturbed rate, but now the phases slowly
drift according to equation 3.5 since Xi(t) = O(ε). To first order in ε, we
can take the firing times to be Tn

j = (n−ψj(t))T. Under this approximation,
equations 3.2 and 3.5 lead to the following equation for the shifted phases
θi(t) = ψi(t)+ t/T:

dθi

dt
= 1

T
+ ε

N∑
j=1

WijRT(θi)PT(θj)+O(ε2), (3.7)

where PT(θ + 1) = PT(θ) for all θ and

PT(θ) =
∞∑

m=−∞
J((θ +m)T), 0 ≤ θ < 1. (3.8)

The summation over m in equation 3.8 is easily performed for J(τ ), satisfying
equation 3.3, and gives PT(θ) = ĴT(θ − τa/T), where ĴT(θ) is a periodic
function of θ with

ĴT(θ) = α2e−αθT

1− e−αT

[
θT + Te−αT

1− e−αT

]
, 0 ≤ θ < 1. (3.9)

The function RT may be interpreted as the phase-response curve (PRC)
of an individual IF oscillator, and PT is the corresponding pulselike func-
tion that contains all details concerning the synaptic interactions. Note that
phase equations of the form 3.7 can also be derived for a system of weakly
coupled limit cycle oscillators based on more detailed biophysical models
such as Hodgkin-Huxley neurons (Ermentrout & Kopell, 1984; Kuramoto,
1984; Hansel et al., 1995). As discussed in some detail by Hansel et al. (1995),
linear IF oscillators have a type I PRC, which means that an instantaneous
excitatory stimulus always advances its phase (RT(θ) is positive for all θ ).
On the other hand, Hodgkin-Huxley neurons are of type II since a stimulus
can either advance or retard the phase depending on the point on the cycle
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at which the stimulus is applied (RT(θ) takes on both positive and negative
values over the domain θ ∈ [0, 1]). Equation 3.7 can be simplified further by
averaging over the natural period T. This leads to an equation of the form

dθi

dt
= ω + ε

N∑
j=1

WijHT(θj − θi)+O(ε2) (3.10)

with ω = 1/T and

HT(φ) =
∫ 1

0
RT(θ)PT(θ + φ)dθ. (3.11)

For positive kernels J(τ ), the interaction function HT(φ) is positive for all φ
since IF oscillators are of type I. However, it is possible to mimic an effec-
tive type II interaction function by introducing a combination of excitatory
and inhibitory interactions between the IF neurons in the definition of J(τ )
(Bressloff & Coombes, 1998a). To illustrate this idea, suppose that we de-
compose J(τ ) as

J(τ ) = J+(τ )− J−(τ ), J±(τ ) = s±(τ − τ±)2(τ − τ±),
s±(τ ) = α2

±τe−α±τ , (3.12)

where J±(τ ) represent α functions for excitatory (+) and inhibitory (−)
synapses. Assuming that the inhibitory pathways are delayed with respect
to the excitatory ones (τ− > τ+) then the effective interaction function of an
IF oscillator can be approximately sinusoidal. This is illustrated in Figure 1.
It is not clear that such a combination of synapses is directly realized in
cortical microcircuits. However, it is known that recurrent excitatory con-
nections also stimulate inhibitory interneurons, and this might lead to an
effective delay kernel of the form 3.14 at the population level.

We define a phase-locked solution of equation 3.10 to be of the form
θi(t) = φi + Ät, where φi is a constant phase and Ä = 1/T + O(ε) is the
collective frequency of the coupled oscillators. Substitution of this solution
into equation 3.10 and working toO(ε) leads to the fixed-point equations,

Ä = 1
T
+ ε

N∑
j=1

WijHT(φj − φi). (3.13)

After choosing some reference oscillator, the N equations (3.13) determine
the collective periodÄ and N−1 relative phases, with the latter independent
of ε. In order to analyze the local stability of a phase-locked solution 8 =
(φ1, . . . , φN), we linearize equation 3.10 by setting θi(t) = φi + Ät + θ̃i(t)
and expanding to first order in θ̃i:

dθ̃i

dt
= ε

N∑
j=1

Ĥij(8)θ̃j, (3.14)
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Figure 1: (Top) Delay kernel J(t) and (bottom) associated interaction function
HT(φ) for a combination of excitatory and delayed inhibitory synaptic interac-
tions given by equation 3.12. Here α± = 10, τ+ = 0, τ− = 0.6, and T = ln 2.

where

Ĥij(8) = Hij(8)− δi,j

N∑
k=1

Hik(8), Hij(8) =WijH′T(φj − φi) (3.15)

and H′T(φ) = dHT(φ)/dφ. One of the eigenvalues of the Jacobian Ĥ is always
zero, and the corresponding eigenvector points in the direction of the flow,
that is (1, 1, . . . , 1). The phase-locked solution will be stable provided that
all other eigenvalues have a negative real part (Ermentrout, 1985).

The existence and stability of phase-locked solutions in the case of a sym-
metric pair of excitatory or inhibitory IF neurons with synaptic interactions
have been studied in some detail by van Vreeswijk et al. (1994). In this case,
N = 2 and W11 = W22 = 0, W12 = W21 = 1. Equation 3.13 then shows
that the allowed solutions for the relative phase φ = φ2 − φ1 are given
by the zeroes of the odd interaction function H−T (φ) = HT(φ) − HT(−φ).
The underlying symmetry of the pair of neurons guarantees the existence
of the in-phase or synchronous solution φ = 0 and the antiphase or an-
tisynchronous solution φ = 1/2. Suppose that τa = 0. For small α, one
finds that the in-phase and antiphase solutions are the only phase-locked
solutions. However, as α is increased, a critical value αc is reached, where
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Figure 2: (a) Relative phaseφ = φ2−φ1 for a pair of IF oscillators with symmetric
inhibitory coupling as a function of αwith I = 2. In each case the antiphase state
undergoes a bifurcation at a critical value of α = αc, where it becomes stable,
and two additional unstable solutions φ, 1 − φ are created. The synchronous
state remains stable for all α. (b) Relative phase φ versus discrete delay τa for a
pair of pulse-coupled IF oscillators with I = 2 and α = 2.

there is a bifurcation of the antiphase solution, leading to the creation of
two partially synchronized states θ and 1 − θ , with 0 < θ < 1/2 and
θ → 0 as α → ∞ (see Figure 2a and van Vreeswijk et al., 1994). As
shown by Coombes and Lord (1997), variation of τa for fixed α produces a
checkerboard pattern of alternating stable and unstable solution branches
(see Figure 2b) that can overlap to produce multistable solutions. Using
equation 3.15, one obtains the following necessary and sufficient condition
for local asymptotic stability of a phase-locked state in the weak coupling
regime:

ε
dH−T (φ)

dφ
> 0. (3.16)

One finds that for τa = 0 and inhibitory coupling (ε < 0), the synchronous
state is stable for all 0 < α < ∞. Moreover, the antiphase solution φ = 1/2
is unstable for α < αc, but it gains stability when α > αc with the creation
of two unstable partially synchronized states. The stability properties of
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Figure 3: Stability of the synchronous solution φ = 0 as a function of α−1 and τa

for weak excitatory coupling with I = 2. Stable and unstable regions are denoted
by s and u, respectively. The stability diagrams are periodic in τa with period
ln[I/(I− 1)]. (This periodicity would be distorted in the strong coupling regime
since the collective period of oscillation depends on the strength of coupling).

all solutions are reversed in the case of excitatory coupling (ε > 0) so that
the synchronous state is now unstable for all α. If the discrete delay τa is
increased from zero, then alternating bands of stability and instability are
created. An example of such regions is displayed in Figure 3. The corre-
sponding stability diagram for the antisynchronous state may be obtained
by shifting the delay according to τa → τa + T/2.

3.2 Slow Synapses: Analog Models. A second approximation scheme
for analyzing IF network dynamics is to assume that the synaptic interac-
tions are sufficiently slow so that the output of a neuron can be characterized
reasonably well by a mean (time-averaged) firing rate (see, for example,
Amit & Tsodyks, 1991; Ermentrout, 1994). Therefore, let us consider the
case in which J(τ ) is given by the alpha function (see equation 3.3) with a
synaptic rise time α−1 significantly longer than all other timescales in the
system. Suppose that the total synaptic current Xi(t) to neuron i is described
by a slowly varying function of time t. If the neuronal dynamics is fast rela-
tive to α−1, then the actual firing rate Ei(t) of a neuron will quickly relax to
approximately its steady-state value, that is,

Ei(t) = f (Xi(t)+ Ii), (3.17)

where, from equation 3.1, the firing-rate function f is of the form

f (X) =
{

ln
[

X
X − 1

]}−1

2(X − 1). (3.18)
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(Note that we have ignored the effects of absolute refractory period, which is
reasonable when the system is operating well below its optimal firing rate).
Equation 3.17 relates the dynamics of the firing rate directly to the stimulus
dynamics Xi(t) through the steady-state response function. In effect, the use
of a slowly varying kernel J(τ ) allows a consistent definition of the firing
rate so that a dynamical network model can be based on the steady-state
properties of an isolated neuron.

Within the above approximation, we can derive a closed set of equations
for the synaptic currents Xi(t). This is achieved by rewriting equation 3.2
as a pair of differential equations that generate the alpha function J(t) of
equation 3.3, and replacing the output spike train of a neuron by the firing-
rate function (see equation 3.18):

α−1 dXi(t)
dt
+ Xi(t) = Yi(t), (3.19)

α−1 dYi(t)
dt
+ Yi(t) = ε

N∑
j=1

WijEj(t− τa). (3.20)

Here Yi(t) is an auxiliary current.
A common starting point for the analysis of analog models is to consider

conditions under which destabilization of a homogeneous low-activity state
occurs, leading to the formation of a state with inhomogeneous and/or time-
dependent firing rates (see Ermentrout, 1998a, for a review). To simplify our
analysis, we shall impose the following condition on the external bias Ii,

I = Ii + ε f (I)
N∑

j=1

Wij (3.21)

for some fixed I > 1. Then for sufficiently weak coupling, |ε| ¿ 1, the ana-
log model has a single stable fixed point given by Yi = Xi = ε f (I)

∑
j Wij,

such that the firing rates are kept at the value f (I). Suppose that we lin-
earize equations 3.19 and 3.20 about this fixed point and substitute into the
linearized equations a solution of the form (Xk(t),Yk(t)) = eλt(Xk,Yk). This
leads to the eigenvalue equation

λ±p
α
= −1±

√
ε f ′(I)νpe−λ

±
p τa/2, p = 1, . . . ,N, (3.22)

where νp, p = 1, . . . ,N, are the eigenvalues of the weight matrix W. The fixed
point will be asymptotically stable if and only if Re λt

p < 0 for all p. As |ε| is
increased from zero, an instability may occur in at least two distinct ways.
If a single real eigenvalue λ crosses the origin in the complex λ-plane, then
a static bifurcation can occur, leading to the emergence of additional fixed-
point solutions that correspond to inhomogeneous firing rates. For example,
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if ε > 0 and W has real eigenvalues ν1 > ν2 > · · · > νN with ν1 > 0, then
a static bifurcation will occur at the critical coupling εc for which λ+1 = 0,
that is, 1 = √

εc f ′(I)ν1. On the other hand, if a pair of complex conjugate
eigenvalues λ = λR ± iλI crosses the imaginary axis (λR = 0) from left to
right in the complex plane, then a Hopf bifurcation can occur, leading to
the formation of periodic solutions, that is, time-dependent firing rates. For
example, suppose that τa = 0 and W has a pair of complex eigenvalues
(ν, ν∗) with ν = reiθ and 0 < θ < π . Denote the corresponding solutions
of equation 3.22 by (λ±, λ∗±). Assuming that all other eigenvalues λ have
negative real part, a Hopf bifurcation will occur at the critical coupling εc
for which Reλ+ = 0, that is, 1 = √

εc f ′(I)r cos(θ/2). An alternative way
of generating oscillatory solutions is to have nonzero delays τa (Marcus &
Westervelt, 1989). Note that the basic stability results are independent of the
inverse rise time α.

To illustrate, consider a symmetric pair of analog neurons with inhibitory
coupling, ε < 0, and W11 =W22 = 0, W12 =W21 = 1. The weight matrix W
has eigenvalues ±1 and eigenmodes (1,±1). Let xi = Xi − ε f (I) so that the
fixed-point equations become x1 = ε f (x2 + I)− ε f (I) and x2 = ε f (x1 + I)−
ε f (I). One solution is the homogeneous fixed point xi = 0. A full bifurcation
diagram showing the location of the fixed points x1 as a function of |ε| is
shown in Figure 4 (top). The homogeneous fixed point xi = 0 is stable for
sufficiently small coupling |ε| but destabilizes at the critical point |ε| = εc
with εc = 1/f ′(I), where it coalesces with two unstable fixed points. For
|ε| > εc, the unstable fixed point at the origin coexists with two stable fixed
points (arising from saddle-node bifurcations). Just beyond the bifurcation
point, the system jumps from a homogeneous state to a state in which one
neuron is active with a constant firing rate f (I − ε f (I)) and the other is
passive with zero firing rate. Note that a pair of excitatory analog neurons
would bifurcate into another homogeneous state. For example, since Ii has
to decrease to keep the firing rate constant when ε > 0 (see equation 3.21),
for strong enough coupling Ii < 1 so that the quiescent state is also a valid
solution.

A well-known result from the analysis of analog neurons is that an
excitatory-inhibitory pair can undergo a Hopf bifurcation to an oscillatory
solution (Atiya & Baldi, 1989). As an illustration, consider the case ε > 0,
τa = 0 and W11 = W22 = 0, W12 = −2, W21 = 1. Here neuron 2 inhibits
neuron 1, whereas neuron 1 excites neuron 2. The eigenvalues of the weight
matrix are ±i so that a Hopf bifurcation arises as ε is increased. (See the
discussion below equation 3.22.) Let x1 = X1+2ε f (I) and x2 = X2− ε f (I) so
that there exists a fixed point at xi = 0. The bifurcation diagram for the am-
plitude x1 as a function of ε is shown in Figure 4 (bottom). It can be seen that
the system undergoes a so-called subcritical Hopf bifurcation in which the
homogeneous fixed point xi = 0 becomes unstable and the system jumps to
a coexisting stable limit cycle, signaling a solution with periodic firing rates.
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Figure 4: (Top) Bifurcation diagram for a pair of analog neurons with sym-
metric inhibitory coupling and external input I = 2. (Bottom) Subcritical Hopf
bifurcation for a pair of analog oscillators with self-interactions. α = 0.5, I = 2,
W11 = W22 = 0, W21 = 1, and W12 = −2. Open circles denote the amplitude
of the resulting limit cycle from the Hopf bifurcation point ε ≈ 2.0, and s (u)
stands for stable (unsta ble) dynamics.

This form of jump is often referred to as a hard excitation. The system also ex-
hibits hysteresis. It is interesting to note that if the firing-rate function f (X)of
equation 3.18 were taken to be the usual smooth sigmoid function, then, for
the given weights, the Hopf bifurcation would be supercritical in the sense
that the limit cycle would grow smoothly from the unstable fixed point so
that there is no jump phenomenon or hysteresis. This is called a soft excita-
tion. (See Atiya & Baldi, 1989.) Another important point is that if the analog
model were described by a first-order equation rather than a second-order
equation (as given by equations 3.19 and 3.20), then it would be necessary
to introduce additional self-interactions (W12,W21 6= 0) in order for a Hopf
bifurcation to occur. This is difficult to justify on neurobiological grounds.
(A first-order equation would be obtained if the delay kernel were taken
to be an exponential function rather than the alpha function 3.3.) We shall
return to this issue in section 4.6.

4 Spike Train Dynamics in the Strong-Coupling Regime

Recall from section 3 that networks of weakly coupled IF neurons can have
stable phase-locked solutions in which all the neurons have the same con-
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stant ISI. On the other hand, a strongly coupled network of analog neu-
rons can bifurcate from a stable homogeneous state with identical time-
independent firing rates to a state with inhomogeneous and/or time-varying
firing rates. (Note that a homogeneous state of the analog model does not
distinguish between different phase-locked solutions since all phase infor-
mation is lost during time averaging.) This suggests that there should exist
some mechanism for destabilizing phase-locked solutions of the IF model in
the strong-coupling regime. Here we identify such a mechanism based on a
discrete Hopf bifurcation of the firing times. This induces inhomogeneous
and periodic variations in the ISIs, which supports a variety of complex dy-
namics, including oscillator death (section 4.3), bursting (section 4.4), and
pattern formation (section 4.5).

4.1 Phase Locking for Arbitrary Coupling. An important simplifying
aspect of the dynamics of pulse-coupled (linear) IF neurons is that it is possi-
ble to derive phase-locking equations without the assumption of weak cou-
pling (van Vreeswijk et al., 1994; Bressloff et al., 1997; Bressloff & Coombes,
1999). This can be achieved by solving equation 3.1 directly under the ansatz
that the firing times are of the form Tn

j = (n− φj)T for some self-consistent

period T and constant phases φj. Integrating equation 3.1 over the inter-
val t ∈ (−Tφi,T − Tφi) and incorporating the reset condition by setting
Ui(−φiT) = 0 and Ui(T − φiT) = 1 leads to the result

1 = (1− e−T)Ii + ε
N∑

j=1

WijKT(φj − φi), (4.1)

where

KT(φ) = e−T
∫ T

0
eτ

∞∑
m=−∞

J(τ + (m+ φ)T)dτ = T2e−T(
1− e−T

)HT(φ). (4.2)

Equation 4.1 has an identical structure to that of equation 3.13 and involves
the same phase interaction function (up to a multiplicative factor). Indeed,
in the weak coupling regime with Ii = I for all i, equation 4.1 reduces to
equation 3.13 with 1/T = Ä. This means that techniques previously devel-
oped for studying phase locking in weakly coupled oscillator networks can
be extended to strongly coupled IF networks. For example, in the case of
a ring of identical IF oscillators with symmetric coupling, group-theoretic
methods can be used to classify all phase-locked solutions and construct bi-
furcation diagrams showing how new solution branches emerge via spon-
taneous symmetry breaking (Bressloff et al., 1997; Bressloff & Coombes,
1999). Furthermore, in the case of a finite chain of IF oscillators with a gra-
dient of external inputs and sinusoidal-like phase interaction functions of
the form shown in Figure 1, one can establish the existence of “traveling
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wave” solutions in which the phase varies monotonically along the chain
(except in some narrow boundary layer); such systems can be used to model
locomotion in simple vertebrates (Bressloff & Coombes, 1998a).

There are, however, a number of significant differences between phase-
locking equations 3.13 and 4.1. First, equation 4.1 is exact, whereas equa-
tion 3.13 is valid only to O(ε) since it is derived under the assumption of
weak coupling. Second, the collective period of oscillations T must be de-
termined self-consistently in equation 4.1. Assume for the moment that T
is given. Suppose that we choose θ1 as a reference oscillator and subtract
from equation 4.1 for i = 2, . . . ,N the corresponding equation for i = 1. This
leads to N−1 fixed-point equations for the N−1 relative phases φ̂j = φj−φ1,
j = 2, . . . ,N, which for Ii = I take the form

0 =
N∑

j=1

WijKT(φ̂j − φ̂i)−
N∑

j=1

W1jKT(φ̂j),

where φ̂1 ≡ 0. The resulting solutions for φ̂j, j = 2, . . . ,N, are functions of T,
which can then be substituted back into equation 4.1 for i = 1 to give an im-
plicit self-consistency condition for T. The analysis is considerably simpler
in the weak-coupling regime since the relative phases are then functions of
the natural period T. The third difference between weak and strong cou-
pling is that although the equations for phase locking in the two models
are formally the same, the underlying dynamical systems are distinct, thus
leading to differences in their stability properties. For example, in the spe-
cial case of a pair of IF neurons, a return map argument can be used to show
that equation 3.16 with T replaced by the collective period T is a necessary
condition for the stability of a phase-locked state for any ε (van Vreeswijk
et al., 1994). However, as we shall establish below, it is no longer a sufficient
condition for stability in the strong coupling regime. (See also Chow, 1998.)

4.2 Desynchronization in the Strong Coupling Regime. In order to
investigate the linear stability of phase-locked solutions of equation 4.1, we
consider perturbations δn

i of the firing times (van Vreeswijk, 1996; Gerstner
et al., 1996; Bressloff & Coombes, 1999). That is, we set Tn

i = (n−φi)T+δn
i in

equation 3.2 and then integrate equation 3.1 from Tn
i to Tn+1

i using the reset
condition. This leads to a mapping of the firing times that can be expanded
to first order in the perturbations (Bressloff & Coombes, 1999):Ii − 1+ ε

N∑
j=1

WijPT(φj − φi)

[δn+1
i − δn

i

]

= ε
N∑

j=1

Wij

∞∑
m=−∞

Gm(φj − φi,T)
[
δn−m

j − δn
i

]
, (4.3)
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where PT satisfies equation 3.8 and

Gm(φ,T) = e−T

T

∫ T

0
et J′(t+ (m+ φ)T) dt. (4.4)

The linear delay-difference equation 4.3 has solutions of the form δn
j = enλδj

with 0 ≤ Im(λ) < 2π . The eigenvalues λ and eigenvectors (δ1, . . . , δN)

satisfy the equationIi − 1+ ε
N∑

j=1

WijPT(φj − φi)

 (eλ − 1)δi

= ε
N∑

j=1

WijGT(φj − φi, λ)δj − ε
N∑

j=1

WijGT(φj − φi, 0)δi, (4.5)

with

GT(φ, λ) =
∞∑

m=−∞
e−mλGm(φ,T). (4.6)

One solution to equation 4.5 is λ = 0 with δi = δ for all i = 1, . . . ,N. This
reflects the invariance of the dynamics with respect to uniform phase shifts
in the firing times, Tn

i → Tn
i + δ. Thus the condition for linear stability of

a phase-locked state is that all remaining solutions λ of equation 4.5 have
negative real part. This ensures that δn

j → 0 as n→∞ and, hence, that the
phase-locked solution is asymptotically stable. By performing an expansion
in powers of the coupling ε, it can be established that for sufficiently small
coupling, equation 4.5 yields a stability condition that is equivalent to the
one based on the Jacobian of the phase-averaged model, equations 3.14
and 3.15. (See Bressloff & Coombes, 1999.) We wish to determine whether
this stability condition breaks down as |ε| is increased (with the sign of ε
fixed).

For concreteness, we shall focus on the stability of synchronous solutions.
In order to ensure that such solutions exist, we impose the condition

Ii = I

1− εKT(0)
N∑

j=1

Wij

 , i = 1, . . . ,N (4.7)

for some fixed I > 1 and T = ln[I/(I − 1)]. The condition on Ii for the IF
model plays an analogous role to equation 3.21 for the analog model in
section 3.2. The synchronous state φi = φ for all i and arbitrary φ is then a
solution of equation 4.1 with collective period T. By fixing T we can make
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a more direct comparison with the analog model whose fixed point at the
origin will have a firing rate f (I) = 1/T in equation 3.18. Define the matrix
Ŵ according to

Ŵij =Wij − δi,j

N∑
k=1

Wik. (4.8)

For sufficiently weak coupling, equations 3.14, 3.15, and 4.2 imply that the
synchronous state is linearly stable if and only if

εK′T(0)Re
[̂
νp
]
< 0, p = 1, . . . ,N − 1, (4.9)

where ν̂p, p = 1, . . . ,N are the eigenvalues of the matrix Ŵ with ν̂N = 0, and
K′T(θ) = T−1dKT(θ)/dθ . In the particular case of a symmetric pair of neurons,
equation 4.9 reduces to the condition εK′T(0) > 0, which is equivalent to
equation 3.16 for φ = 0. (The case φ 6= 0 is obtained in exactly the same
fashion). It follows that the stability diagram of Figure 3 displays the sign of
K′T(0) as a function of α and τa. For example, in the case of zero axonal delays
(τa = 0), Figure 3 implies that K′T(0) < 0 for all finiteα and T, and equation 4.9
reduces to the stability condition εRêνp > 0 for all p = 1, . . . ,N − 1.

The stability of the synchronous state for weak coupling implies that
the zero eigenvalue is nondegenerate and all other eigenvalues λ satisfy-
ing equation 4.5 have negative real parts. As the coupling strength |ε| is
increased from zero, destabilization of the synchronous state will be sig-
naled by one or more complex conjugate pairs of eigenvalues crossing the
imaginary axis in the complexλ-plane from left to right. (It is simple to estab-
lish that the synchronous state cannot destabilize due to a real eigenvalue’s
crossing the origin by setting λ = 0 in equation 4.5.) We proceed, there-
fore, by substituting φi = φ, i = 1, . . . ,N and imposing the condition 4.7.
Equation 4.5 reduces to the form

[(
eλ − 1

) (
I − 1+ ε0iIK′T(0)

)+ ε0iK′T(0)
]
δi = εGT(0, λ)

N∑
j=1

Wijδj, (4.10)

where 0i =
∑N

j=1 Wij. We have used the identities PT(0) − IKT(0) = IK′T(0)
and GT(0, 0) = K′T(0). We then substitute λ = iβ into equation 4.10 and
look for the smallest value of the coupling strength, |ε| = εc, for which a
real solution β exists. This determines the Hopf bifurcation point at which
the synchronous state becomes unstable. (In the special case β = π this
reduces to a period doubling bifurcation.) Note that when0i is independent
of i, equation 4.10 can be simplified by choosing δi to lie along one of the
eigenvectors of the weight matrix W.

We shall explore the nature of the Hopf instability through a number of
specific examples. We shall also establish that for slow synapses, the strong
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coupling behavior of the IF model is consistent with that of the mean firing-
rate model of section 3.2 (on an appropriately defined timescale). In order
to compare the two types of model, it will be useful to introduce a few
definitions. For a network of N IF neurons labeled i = 1, . . . ,N, let us define
the long-term firing rate of a neuron to be ai = 1−1

i , where1i is the mean ISI,

1i = lim
M→∞

1
2M+ 1

M∑
m=−M

1m
i , (4.11)

with1m
i = Tm+1

i −Tm
i . A necessary requirement for good agreement between

the analog and IF models is that the mean firing rates ai of the IF model match
the corresponding firing rates of the analog model. In general, one would
also expect to observe fluctuations in the ISIs of the IF network that are not
resolved by the analog model. A Hopf bifurcation for maps (also known as
a Neimark-Sacker bifurcation) is usually associated with the formation of
periodic (or quasiperiodic) orbits, which in the current context corresponds
to periodic variations in the ISIs. In cases where the analog model bifurcates
to a state with time-independent firing rates, we expect the periodic orbits
of the ISIs to be small relative to the firing period, at least for slow synapses;
that is, |1m

i −1i|/1i ¿ 1 for all i,m. (See the example of pattern formation
in section 4.5, in particular, Figure 12.) On the other hand, in cases where
an analog network destabilizes to a state with time-varying firing rates, we
expect the periodic orbits of the ISIs in the IF model to be relatively large.
Under such circumstances, we can introduce a sliding window of width
2P+ 1 for the IF model in order to define a short-term average firing rate of
the form ai(m) = 1i(m)−1 where

1i(m) = 1
2P+ 1

P∑
p=−P

1
m+p
i .

One can then see if there is a good match between the time-dependent firing
rates of the two models for an appropriately chosen value of P. Actually, in
practice it is simpler to compare variations in the firing rate of an analog
network directly with variations in the ISIs of the corresponding IF network
(see Figure 8).

4.3 Oscillator Death in a Globally Coupled Inhibitory Network. As
our first example illustrating the Hopf instability identified in section 4.2,
we consider a network of N identical IF oscillators with all-to-all inhibitory
coupling and no self-interactions. This type of architecture has been used,
for example, to model the reticular thalamic nucleus (RTN), which is thought
to act as a pacemaker for synchronous spindle oscillations observed during
sleep or anesthesia (Wang & Rinzel, 1992; Golomb & Rinzel, 1994). In the
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biophysical model of RTN developed by Wang and Rinzel (1992), neural os-
cillations are sustained by postinhibitory rebound, a phenomenon whereby
a neuron can fire after being hyperpolarized over an extended period and
then released. This should be contrasted with our simple IF model in which
oscillations are sustained by an external bias. We shall show that for slow
synapses, desynchronization via a Hopf bifurcation in the firing times oc-
curs, leading to oscillator death in the strong coupling regime, that is, certain
cells suppress the activity of others. (See also the recent study of mutually
inhibitory Hodgkin-Huxley neurons by White, Chow, Ritt, Soto-Trevino, &
Kopell, 1998.)

The weight matrix W of a globally coupled inhibitory network with
ε < 0 is given by Wii = 0 and Wij = 1/(N − 1) so that 0i = 1 for all
i = 1, . . . ,N. It follows that W has a nondegenerate eigenvalue ν+ = 1
with corresponding eigenvector (1, 1, . . . , 1) and an (N−1)-fold degenerate
eigenvalue ν− = −1/(N−1). The eigenvalues of the matrix Ŵ, equation 4.8,
are ν̂+ = 0 and ν̂− = −N/(N − 1), so that the synchronous state is stable
in the weak coupling regime provided that εK′T(0) > 0 (see equation 4.9).
This is certainly true for zero axonal delays (see Figure 3). Note that the
underlying permutation symmetry of the system means that there are addi-
tional phase-locked states in which the neurons are divided into two or more
clusters of synchronized cells (Golomb & Rinzel, 1994). We shall investigate
the stability of the synchronous state as |ε| is increased. Take (δ1, . . . , δN) in
equation 4.10 to be an eigenvector corresponding to either ν = ν+ or ν = ν−
and set λ = iβ. Equating real and imaginary parts then leads to the pair of
equations,

εK′T(0)+ [cos(β)− 1][I − 1+ εIK′T(0)] = εC(β)ν

sin(β)[I − 1+ εIK′T(0)] = −εS(β)ν, (4.12)

where C(β) = ReGT(0, iβ, ), S(β) = −ImGT(0, iβ).
In Figure 5 we plot the solutions ε of equation 4.12 as a function of the

inverse rise time α for a pair of inhibitory neurons (N = 2) with T = ln 2
and τa = 0. The solid (dashed) solution branch corresponds to the eigen-
value ν = −1 (ν = 1). The lower branch determines the critical coupling
|ε| = εc(α) for a Hopf instability. An important result that emerges from
this figure is that there exists a critical value α0 of the inverse rise time be-
yond which a Hopf bifurcation cannot occur. That is, if α > α0, then the
synchronous state remains stable for arbitrarily large inhibitory coupling.
On the other hand, for α < α0, destabilization of the synchronous state
occurs as the coupling strength ε crosses the solid curve of Figure 5 from
below. This signals the activation of the eigenmode (δ1, δ2) = (1,−1), which
suggests that an inhomogeneous state will be generated. Indeed, direct nu-
merical simulation of the IF model shows that just after destabilization of
the synchronous state (|ε| > εc), the system jumps to an inhomogeneous
state consisting of one active neuron and one passive neuron. We conclude
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Figure 5: Region of stability for a synchronized pair of identical IF neurons
with inhibitory coupling and collective period T = ln 2. The solid curve |ε| =
εc(α) denotes the boundary of the stability region, which is obtained by solving
equation 4.12 for ν = −1 as a function of α with τa = 0. Crossing the boundary
from below signals excitation of the linear mode (1,−1), leading to a stable
state in which one neuron becomes quiescent (oscillator death). For α > α0, the
synchronous state is stable for all ε. The dashed curve denotes the solution of
equation 4.12 for ν = 1.

that for sufficiently slow synapses, a pair of IF neurons displays similar
behavior to a corresponding pair of analog neurons in the strong coupling
regime (see section 3.2 and Figure 4 (top)). A rough order estimate for the
critical inverse rise time α0 is α−1

0 ≈ T, where T is the collective period
of oscillations before destabilization. Such a result is not surprising since
one would expect that for a reasonable match between the IF and (time-
averaged) analog models to occur, the IF neurons should sample incoming
spike trains over a sliding window that is not too small. The width of such
a sliding window is determined by the rise time α−1.

The above result appears to be quite general. For example, suppose that
we have a nonzero discrete delay τa such that the synchronous state is un-
stable and the antiphase state is stable for a given α. The latter state also
destabilizes via a Hopf bifurcation in the firing times for small α, lead-
ing to oscillator death. The result extends to larger values of N, for which
ν− = −1/(N−1) in equation 4.12. Here desynchronization of a phase-locked
state leads to clusters of active and passive neurons. Interestingly, the crit-
ical value α0 decreases with N, indicating the greater tendency for phase
locking to occur in large, globally coupled networks. We plot εc as a func-
tion of α for a range of values of network size N in Figure 6, where it can be
seen that α0(N) → 0 as N → ∞. This implies that for large networks, the
neurons remain synchronized for arbitrarily large coupling, even for slow
synapses. Indeed, since real neurons typically have an inverse rise time α
of the order 2 or larger, it follows that for realistic synaptic time constants,
the network can never experience oscillator death for N larger than 5 or so.
(There is one subtlety to be noted here. The dashed solution curve shown
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εc

α

Figure 6: Plot of critical coupling εc as a function of α for various network sizes
N. The critical inverse rise time α0(N) is seen to be a decreasing function of N,
with α0(N)→ 0 as N→∞.

in Figure 5 corresponds to excitation of the uniform mode (1, 1, . . . , 1) and
is independent of N. As N increases, it is crossed by the curve εc(α) so that
for a certain range of values of α, it is possible for the synchronous state to
destabilize due to excitation of the uniform mode. The neurons in the new
state will still be synchronized, but the spike trains will no longer have a
simple periodic structure.)

The persistence of synchrony in large networks is consistent with the
mode-locking theorem obtained by Gerstner et al. (1996) in their analysis
of the spike response model. We shall briefly discuss their result within
the context of the IF model. For the given globally coupled network, the
linearized map of the firing times, equation 4.3, becomes

{
I − 1+ εIK′T(0)

} [
δn+1

i − δn
i

]
= ε

∞∑
m=−∞

Gm(0,T)

 1
N − 1

∑
j6=i

δn−m
j − δn

i

 . (4.13)

The major assumption underlying the analysis of Gerstner et al. (1996) is
that for large N, the mean perturbation 〈δm〉 = ∑j6=i δ

m
j /(N − 1) ≈ 0 for all

m ≥ 0 say. Equation 4.13 then simplifies to the one-dimensional, first-order
mapping,

δn+1
i = I − 1+ ε(I − 1)K′T(0)

I − 1+ εIK′T(0)
δn

i ≡ kTδ
n
i . (4.14)

The synchronous (coherent) state will be stable if and only if |kT| < 1. It
is instructive to establish explicitly that equation 4.14 is equivalent to the
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corresponding result derived for the spike-response model (see equation 4.8
of Gerstner et al., 1996), which in our notation can be written as

δn+1
i =

∑
l≥1 h′r(lT)δn+1−l

i∑
l≥1 h′r(lT)+ ε

∑
l≥1 h′s(lT)

. (4.15)

Here h′r(t) = dhr(t)/dt. First, using equations 2.7, 3.3, and 4.2, it can be shown
that

∑
l≥1 h′r(lT) = e−T/(1 − e−T) = I − 1 and

∑
l≥1 h′s(lT) = IK′T(0). Setting

A(T) = I − 1 + εIKT(0), we can then rewrite equation 4.15 as A(T)δn+1
i =∑

l≥1 e−lTδn+1−l
i . It follows that A(T)δn+1

i − e−TA(T)δn
i = e−Tδn

i , which is
identical to equation 4.14 since e−T = (I−1)/I. Equation 4.15 or equation 4.14
implies that the synchronous state is stable in the large N limit provided
that ε

∑
l≥1 h′s(lT) > 0, that is, εK′T(0) > 0 (cf. equation 3.16). This is the

essence of the mode-locking theorem of Gerstner et al. (1996). Our analysis
also highlights one of the simplifying features of the IF model with alpha
function response kernels: that the summations over l in equation 4.15 can
be performed explicitly. It would be of interest, however, to investigate to
what extent the results of this article carry over to more general choices of hr
and hs in the construction of the spike-response model. We expect that the
inclusion of details concerning refractoriness will not alter the basic picture,
for oscillator death is also found in a pair of mutually inhibitory Hodgkin-
Huxley neurons, as shown by White et al. (1998) in the case of synapses with
first-order channel kinetics, and also confirmed numerically by ourselves
in the case of second-order kinetics.

Finally, in other related work, van Vreeswijk (1996) has shown how a net-
work of IF neurons with global excitatory coupling can destabilize from an
asynchronous state via a Hopf bifurcation in the firing times. However, this
leads to small-amplitude quasiperiodic variations in the ISIs of the oscilla-
tors (the ISIs lie on relatively small, closed orbits). This can be understood
by looking at a corresponding network of excitatory analog neurons, which
can bifurcate only to another homogeneous time-independent state.

4.4 Bursting in an Excitatory-Inhibitory Pair of IF Neurons. Now let
us consider an excitatory-inhibitory pair of IF neurons with ε > 0, W11 =
W22 = 0 and W12 = −2, W21 = 1 and zero axonal delays τa = 0. The
analog version of this network, studied in section 3.2, was shown to exhibit
periodic variations in the mean firing rate in the strong coupling regime.
It can be established from equation 4.9 that the synchronous state is stable
for sufficiently weak coupling. In order to investigate Hopf instabilities in
the strong coupling regime, we set λ = iβ in equation 4.10 and solve for
(ε, β) as a function of α. For each α, the smallest solution ε = εc determines
the Hopf bifurcation point, which leads to a stability diagram of the form
shown in Figure 7. In contrast to the previous example, a critical coupling
for a Hopf bifurcation in the firing times exists for all α. Direct numerical
solution of the system shows that beyond the Hopf bifurcation point, the
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ε

α

Figure 7: Region of stability for an excitatory-inhibitory pair of IF neurons with
inhibitory self-interactions, ε > 0 and W11 = W22 = 0, W21 = 1,W12 = −2. The
collective period of synchronized oscillations is taken to be T = ln 2. Solid and
dashed curves denote solutions of equation 4.10 for ε with λ = iβ, real β. Cross-
ing the solid boundary of the stability region from below signals destabilization
of the synchronous state, leading to the formation of a periodic bursting state.

system jumps to a state in which the two neurons exhibit periodic bursting
patterns (see Figure 8). This can be understood in terms of mode-locking
associated with periodic variations of the ISIs on closed attracting orbits (see
Figure 9). Suppose that the kth oscillator has a periodic solution of length Mk

so that1n+pMk

k = 1n
k for all integers p. If11

k À 1n
k for all n = 2, . . . ,Mk, say,

then the resulting spike train exhibits bursting with the interburst interval
equal to11

k and the number of spikes per burst equal to Mk. Although both
oscillators have different interburst intervals (11

1 6= 11
2) and numbers of

spikes per burst (M1 6= M2), their spike trains have the same total period,
that is,

∑M1
n=11

n
1 =

∑M2
n=11

n
2 . Due to the periodicity of the activity, the ISIs

fall on only a number of discrete points on the orbit, which is radically
different from the case found in van Vreeswijk (1996), where the whole curve
is visited due to the quasiperiodical nature of the firing. (Quasiperiodicity is
also observed in the pattern formation example presented in section 4.5.) The
variation of the ISIs1n

i with n is compared directly with the corresponding
variation of the firing rates of the analog model in Figure 8. Good agreement
can be seen between the two models in the case of small α (see Figure 8a),
but discrepancies between the two arise as α increases (see Figure 8b). As
in the case of oscillator death, the occurrence of bursting through a Hopf
bifurcation in the firing times appears to be quite general. For example,
suppose that we have a nonzero discrete delay τa such that the synchronous
state is unstable and the antiphase state is stable for a given α. We find that
the latter state also destabilizes via a Hopf bifurcation in the firing times for
small α, leading to a periodic bursting state.
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τ

Figure 8: Spike train dynamics for a pair of IF neurons with both excitatory and
inhibitory coupling corresponding to points A and B in Figure 7, respectively.
The firing times of the two oscillators are represented with lines of different
heights (marked with a +). Smooth curves represent variation of firing rate in
the analog version of the model.

∆

∆

∆

∆

Figure 9: A plot of the ISIs (1n−1
k ,1n

k ) of the spike trains shown in Figure 8a, il-
lustrating how they lie on closed periodic orbits. Points on an orbit are connected
by lines. Each triangular region is associated with only one of the neurons, high-
lighting the difference in interburst intervals (see also Figure 8a). The inset is a
blowup of orbit points for one of the neurons within a burst.
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Figure 10: (a) Example of a Mexican hat function weight distribution W(k) and
(b) its eigenvalue distribution ν(p).

Our analysis of a pair of excitatory-inhibitory IF neurons suggests that
bursting can arise at a network level due to strong synaptic coupling with-
out the need for additional slow ionic currents (see Wang & Rinzel, 1995).
An alternative mechanism for generating bursts in networks of interacting
neurons is based on electrical (diffusive) coupling between cells. This has
been studied in small networks of leaky-integrator neurons with postin-
hibitory rebound (Mulloney, Perkel, & Budelli, 1981) and in large networks
of Hodgkin-Huxley neurons (Han, Kurrer, & Kuramoto, 1995). Our analy-
sis also shows that bursting can occur in the absence of the self-interaction
terms considered in our previous work (Bressloff & Coombes, 1998b); it is
hard to justify the presence of such terms on neurophysiological grounds.
(See section 4.6.)

4.5 Pattern Formation in a One-Dimensional Network. As our final
example of strong-coupling Hopf instabilities in IF networks, we consider
a ring of N = 2M + 1 neurons evolving according to equations 3.1 and 3.2
with ε > 0, τa = 0 and a weight matrix Wij =W(i− j) where

W(k) = A1 exp(−k2/(2σ 2
1 ))− A2 exp(−k2/(2σ 2

2 )), 0 < k ≤ M. (4.16)

W(k) = 0 for |k| > M and W(0) = 0 (no self-interactions). We choose
A1 > A2 and σ1 < σ2. W(k) then represents a lattice version of a Mexican
hat interaction function in which there is competition between short-range
excitation and long-range inhibition. A continuum version of W(k) is plotted
in Figure 10a for illustration. This type of architecture is well known to
support spatial pattern formation in analog neural systems (Ermentrout
& Cowan, 1979; Ermentrout, 1998a). We shall show that similar behavior
occurs in the IF model.

For the given weight matrix W and homogeneous external inputs Ii = I,
i = 1, . . . ,N, the network is translationally invariant. This means that one
class of solution to the phase-locking equations 4.1 consists of “traveling
waves” of the form φk = qk/N for integers q = 0, . . . ,N − 1. This type of
phase-locked solution also arises in studies of the spike-response model
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(Kistler et al., 1998) and in studies of weakly coupled phase oscillators
(Crook, Ermentrout, Vanier, & Bower, 1997; Bressloff & Coombes, 1997). We
shall concentrate on the synchronous solution q = 0. For convenience, we
shall assume that there is an equal balance between excitation and inhibition
by fixing A1,A2 in equation 4.16 so that 0i ≡

∑N
j=1 Wij =

∑M
k=−M W(k) = 0

for all i. (This condition is not necessary for pattern formation to occur.) The
collective period of synchronous oscillations is then T = ln[I/(I − 1)] (see
equation 4.7.) In order to investigate the linear stability of the synchronous
state, we need to determine the eigenvalues of the weight matrix W. These
are given by

ν(p) = 2
M∑

k=1

W(k) cos
(
pk
)
, p = 0,

2π
N
, . . . ,

2π(N − 1)
N

, (4.17)

with ν(p) > ν(0) = 0 for all p 6= 0. The corresponding eigenvectors are
δk = eikp. Equation 4.9 then shows that the synchronous state is stable in the
weak coupling regime, since K′T(0) < 0 for all α (when τa = 0) and ν̂(p) =
ν(p). Let±pmax be the wave numbers at which ν(p) attains its maxima. (This
is illustrated for the continuum Mexican hat function in Figure 10b.) Take
δk = eikp and 0i = 0, and set λ = iβ in equation 4.10. Equating real and
imaginary parts leads to the pair of equations

[cos(β)− 1][I − 1] = ε̂C(β)

sin(β)[I − 1] = −ε̂S(β), (4.18)

where ε̂ = ενmax and νmax = ν(pmax). We find that there exist non-trivial
solutions of equation 4.18 for all values of α (see Figure 11). It follows that
a Hopf bifurcation occurs due to activation of the eigenmodes δk = e±ipmaxk.
Since pmax 6= 0, the instability will involve spatially periodic perturbations
of the firing times, and this leads to the formation of regular activity patterns
across the network, as illustrated in Figure 12.

When the network undergoes a Hopf bifurcation, it leads to the creation
of periodic orbits for the ISIs. Define the long-term average firing rate ac-
cording to ak = 1

−1
k , where 1k is defined in equation 4.11. It follows that

spatial (k-dependent) variations in the firing rates ak can occur if there is
a corresponding spatial distribution of the orbits in phase-space. Figure 12
shows that the orbits are indeed separated from each other in phase-space
(although they remain small relative to the natural timescales of the system).
The resulting long-term average behavior of the system is characterized by
spatially regular patterns of output activity as shown in the inset of Fig-
ure 12. These patterns are found to be consistent with those observed in the
corresponding analog version of the model presented in section 3.2, and
such agreement holds over a wide range of values of α that includes both
fast and slow synapses. However, the IF model has additional fine structure
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Figure 11: Region of stability for a ring of N = 51 IF neurons having the weight
distribution W(k) of equation 4.16 with σ1 = 2.1, σ2 = 3.5, A1 = 1.77, and∑

k W(k) = 0. The collective period of synchronized oscillations is taken to be
T = ln 1.5. Solid and dashed curves denote solutions of equation 4.18 for ε̂.
Crossing the solid boundary of the stability region from below signals destabi-
lization of the synchronous state, leading to the formation of spatially periodic
patterns of activity as shown in Figure 12.

associated with the dynamics on the periodic orbits of Figure 12, which is
not resolved by the analog model. This is illustrated in the insets of Figure 13,
where we plot temporal variations in the inverse ISI (or instantaneous firing
rate) of a single oscillator for two different values of α. It can be seen that
there are deterministic fluctuations in the mean firing rate. In order to char-
acterize the size of these fluctuations, we define a deterministic coefficient
of variation CV(k) for a neuron k according to

CV(k) =

√(
1k −1k

)2
1k

, (4.19)

with averages defined by equation 4.12 for some sliding window of width
P. The CV for a single neuron is plotted as a function of α in Figure 13. This
shows that the relative size of the deterministic fluctuations in the mean
firing rate is an increasing function ofα. For slow synapses (α→ 0), the CV is
very small, indicating an excellent match between the IF and analog models.
However, the fluctuations become more significant when the synapses are
fast. For IF networks with a type of disordered Mexican hat interaction,
instantaneous synapses, and stochastic external input, it is also known that
a further component to the CV arises from the amplification of correlated
fluctuations (Usher, Stemmler, Koch, & Olami, 1994). Interestingly Softy and
Koch (1992) have shown that stochastic input alone cannot account for the
high ISI variability exhibited by cortical neurons in awake monkeys.



120 Paul C. Bressloff and S. Coombes

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8
∆k

∆k

n-1

n
0

0
15 30 45

1
2

k

a

k

k

Figure 12: Separation of the ISI orbits in phase-space for a ring of N = 51
IF corresponding to point A in Figure 11 (α = 2, ε = 0.4). The attractor of
the embedded ISI with coordinates, (1n−1

k ,1n
k ), is shown for all N neurons.

(Inset) Regular spatial variations in the long-term average firing rate ak (dashed
curve) are in good agreement with the corresponding activity pattern (solid
curve) found in the analog version of the network constructed in section 3.2,
with ak now determined by the mean firing-rate function (see equation 3.18).

One potential application of the above analysis is to the study of an IF
model of orientation selectivity in simple cells of cat visual cortex. Such a
model has been investigated numerically by Somers, Nelson, and Sur (1996),
who consider a ring of IF neurons with k labeling the orientation preference
θ = πk/N of a given neuron. The neurons interacted via synapses with
spike-evoked conductance changes described by alpha functions and with
a pattern of connectivity consisting of short-range excitation and long-range
inhibition analogous to the Mexican hat function of Figure 10. Numerical
investigation showed how the recurrent interactions led to sharpening of
orientation tuning curves. Note that the model of Somers et al. (1996) also
included shunting terms and time-dependent thresholds; it should be pos-
sible to extend the analysis of our article to account for such features.

4.6 Bursting and Oscillator Death Revisited. In section 3.2 we pointed
out that in the case of a first-order analog model, an excitatory-inhibitory
pair of neurons without self-interactions cannot undergo a Hopf bifurca-
tion. This suggests that the bursting behavior studied in section 4.4 might
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Figure 13: Plot of the coefficient of variation CV for a single IF oscillator as a
function of the inverse rise time α. All other parameter values are as in Figure 12.
For each α, the oscillator is chosen to be one with the maximum mean firing rate.
(Insets) Time series showing variation of the inverse ISI (1n)−1 with n for two
particular values of α.

be sensitive to the rise time of synaptic response even in the case of slow
synaptic decay. In order to explore the distinct roles played by the rate of
rise and fall of synaptic interactions, we generalize the alpha function of
equation 3.3 by considering the difference of exponentials

J(t) = α1α2

α2 − α1

(
e−α1t − e−α2t)2(t). (4.20)

In the limit α2 → α1 → α, this reduces to the alpha function (see equa-
tion 3.3). If α1 > α2, then the asymptotic behavior of a synapse is approx-
imately given by e−α2t, and the time to peak is tp = [α1 − α2]−1 ln(α1/α2).
The roles of α1 and α2 are reversed if α2 > α1.

In Figure 14a, we plot the critical coupling for a discrete Hopf bifurcation
in the firing times for the excitatory-inhibitory pair previously analyzed in
section 4.4. Now, however, the delay distribution J(t) is taken to be given
by equation 4.20, with α2 = 0.2 and α1 a free parameter. Since the synaptic
decay time is relatively slow, we expect there to be a good match between
the IF and analog models. This is indeed found to be the case, as illustrated
in Figure 14a, which shows that the critical coupling for bursting in the
analog and IF models is in very close agreement. More surprising, it is seen
that bursting persists even for large values of α1, that is, for fast synaptic
rise times. (Bursting still occurs even when α1 is of the order 100 or more.)
One might still expect the frequency of the oscillations to approach zero
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Figure 14: Critical coupling for a Hopf bifurcation in the firing times as a func-
tion of the rise time α1 for fixed decay time α2 = 0.2. (a) Excitatory-inhibitory
pair with ε > 0, W11 = W22 = 0, W21 = 1, and W12 = −2. Bursting can oc-
cur even for fast rise times. The corresponding critical coupling for the analog
model is shown as a dashed curve. (b) Inhibitory pair of IF neurons with ε < 0,
W11 = W22 = 0, W21 = W12 = 1. Critical coupling is only weakly dependent
on α1.

in the limit α1 → ∞. However, this is not found to be the case, which can
be understood from the fact that the Hopf bifurcations are subcritical (cf.
Figure 4b). Finally, in Figure 14b we plot the critical coupling for oscillator
death in an inhibitory pair of IF neurons. There is only a weak dependence
on α1, which is consistent with the analog model.

5 Discussion

We have presented a dynamical theory of spiking neurons that bridges the
gap between weakly coupled phase oscillator models and strongly coupled
firing-rate (analog) models. The basic results of our article can be summa-
rized as follows:

1. A fundamental mechanism for the desynchronization of IF neurons
with strong synaptic coupling is a discrete Hopf bifurcation in the
firing times. This typically leads to nonphase-locked behavior char-
acterized by periodic or quasiperiodic variations of the ISIs on closed
orbits. In the case of slow synapses, the coarse-grained dynamics can
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be represented very well by a corresponding analog model in which
the output of a neuron is taken to be a mean firing rate.

2. A homogeneous network of N synchronized IF neurons with global
inhibitory coupling can destabilize in the strong coupling regime to a
state in which some of the neurons became inactive (oscillator death).
Thus the stability criterion obtained by van Vreeswijk et al. (1994) for
N = 2 is valid only in the weak coupling regime. There exists a critical
value of the inverse rise time, α0(N), such that synchrony persists for
arbitrarily large coupling when α > α0(N) (fast synapses). Moreover,
α0(N) → 0 as N → ∞. This establishes that the stability condition
specified in the mode-locking theorem of Gerstner et al. (1996) is valid
in the thermodynamic limit but no longer holds for finite networks
with slow synapses.

3. Rhythmic bursting patterns can occur in asymmetric IF networks with
a mixture of inhibitory and excitatory synaptic coupling. The ISIs
evolve on periodic orbits that are large relative to the mean ISI within
a burst. There is good agreement between the temporal variation of
the ISIs in the IF model and the variation of the firing rate in the
corresponding analog model.

4. A network of IF neurons with long-range interactions can desynchro-
nize to a state with a regular spatial variation in the mean firing rate
that is in good agreement with the corresponding analog model. The
ISIs evolve on closed orbits that are well separated in phase-space.
The fine temporal structure of the IF model leads to deterministic
fluctuations of the activity patterns whose coefficient of variation is
an increasing function of the inverse rise time α. In other words, fast
synapses lead to higher levels of deterministic noise.

An important question that we hope to address elsewhere concerns the
extent to which the complex behavior exhibited by the IF networks studied
in this article is mirrored by more biophysically detailed models of spiking
neurons. Preliminary numerical studies of Hodgkin-Huxley neurons sug-
gest a strong connection between the two classes of model. (See also White
et al., 1998.) The advantage of working with the IF model is that it allows
precise analytical statements to be made. Moreover, there are a number of
ways of extending our analysis to take into account additional aspects of
neuronal processing.

The effects of diffusion along the dendritic tree of a neuron can be incorpo-
rated into the model by taking J(τ ) in equation 3.2 to be the Green’s function
of the corresponding cable equation. It is also possible to take into account
active membrane properties under the assumption that variations of the
dendritic membrane potential are small so that the channel kinetics can be
linearized along the lines developed by Koch (1984). The resulting mem-
brane impedance of the dendrites displays resonant-like behavior due to the
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additional presence of inductances. This leads to a corresponding form of
resonant-like synchronization. In other words, there is a strongly enhanced
(reduced) tendency to synchronize for excitatory (inhibitory) coupling when
the resonant frequency of the dendritic membrane approximately matches
the frequency of the oscillators. Active dendrites can also desynchronize ho-
mogeneous networks of IF oscillators with strong excitatory or inhibitory
coupling, leading to periodic bursting patterns (Bressloff, 1999).

The response of a network to a sinusoidal external stimulus may be
studied by taking Ii = A+B sin(ωt) in equation 3.1, where A,B are constants.
Since the resulting dynamical system is now nonautonomous, it is no longer
possible to specify phase locking in terms of N − 1 relative phases and a
self-consistent collective period (see equation 4.1). However, one can derive
conditions under which the network is entrained to the external stimulus.
For example, in the case of 1:1 mode locking, the firing times of the IF neurons
are of the form Tm

j = (m− φj)T, with T = 2π/ω. The absolute phases φj are
determined from the set of equations

1 = (1− e−T)A+ (1− e−T)F(φi)+ ε
N∑

j=1

WijKT(φj − φi), (5.1)

with KT given by equation 4.2 and F(φ) = B[sin(2πφ)+ω cos(2πφ)]/(1+ω2).
It is also possible to investigate the stability of such solutions by a relatively
straightforward generalization of the analysis presented in section 4.2. An-
other interesting extension is to p: q mode locking. For example, suppose
that the neurons have T-periodic firing patterns in which the jth neuron
fires qj times over an interval T. In order to generate such solutions, it is
necessary to take the firing times to have the general form (Coombes &
Bressloff, 1999):

Tn
j = T

([
n
qj

]
− φj,n mod qj

)
, (5.2)

where [.] denotes the integer part. This generates a set of
∑N

j=1 qj closed
equations for the absolute phases φj,n mod qj

. One can use these equations
to determine the borders in parameter space where the ansatz 5.2 for mode
locking fails. The set of such borders will define an Arnold tongue diagram,
with overlapping tongues indicating possible regions of multistability and
chaos. Similar techniques can be used to study the bursting solutions found
in section 4.4. The existence of chaotic solutions can be studied using an
extension of the notion of a Lyapunov exponent that takes into account
the presence of discontinuities in the dynamics due to reset (Coombes &
Bressloff, 1999). Incidentally, the construction of a Lyapunov exponent also
allows one to understand the spike-time reliability of an IF neuron in re-
sponse to small, aperiodic signals as recently observed by Hunter, Milton,
Thomas, & Cowan (1998).
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Another important issue concerns the effects of noise. We expect that
sufficiently small levels of noise will not alter the basic results of this ar-
ticle. On the other hand, the presence of noise can lead to new and in-
teresting phenomena as illustrated by the numerical study of pattern for-
mation by Usher et al. (1994) and Usher, Stemmler, & Olami (1995). They
considered a two-dimensional network of IF neurons with short-range ex-
citation and long-range inhibition, fast synapses, and a stochastic exter-
nal input. They observed patterns of activity in the mean firing rate that
are two-dimensional versions of the patterns shown in the inset of Fig-
ure 12. It was found that in a certain parameter regime, these patterns
were metastable in the presence of noise and tended to diffuse through
the network. This macroscopic dynamics resulted in 1/f power spectra and
power law distributions of the ISIs on the microscopic scale of a single neu-
ron, and led to a large coefficient of variation, CV > 1. We are currently
carrying out a detailed study of pattern formation in two-dimensional IF
networks using the methods presented in our article and hope to gain fur-
ther insight into the observations of Usher et al. (1994, 1995), in particular,
the interplay between noise and the underlying deterministic dynamics.
One way of including noise in the IF model or the spike-response model
is by introducing a probability P of firing during an infinitesimal time δt:
P(U; δt) = τ−1(U)δt. To mimic more realistic models, the response time τ(U)
is chosen to be large if U < h and to vanish if U À h. This is achieved by
writing τ(U) = τ0e−β(U−h), where τ0 is the response time at threshold and β
determines the level of noise. The deterministic case is recovered in the limit
β →∞. In the case of large, homogeneous networks, one can use a mean-
field approach to reduce the dynamics to an analytically tractable form
(see Gerstner, 1995). Note that another consequence of noise is to smooth
out the firing-rate function (see equation 3.18) in the analog version of the
model.

A final aspect we would like to highlight here is the distinction between
excitable and oscillatory networks. In this article we have focused on the
latter case by taking Ii > 1 in equation 3.1 so that the network may be viewed
as a coupled system of oscillators with natural periods Ti = ln[Ii/(Ii − 1)].
However, it is also possible for spontaneous network oscillations to occur
in the excitable regime, whereby Ii < 1 for all i = 1, . . . ,N. All of the basic
analytical results presented in section 4 can be carried over to the excitable
regime, in particular, the phase-locking equation 4.1 and the eigenvalue
equation 4.5. On the other hand, the weak coupling theory of section 3.1 is
no longer applicable since one requires a finite level of coupling to maintain
oscillatory behaviour. There have also been a number of studies of waves
in excitable spiking networks in both one dimension (Ermentrout & Rinzel,
1981; Ermentrout, 1998b) and two dimensions (Chu et al., 1994; Kistler et
al., 1998). We are currently carrying out a detailed comparison of wave
phenomena in excitable and oscillatory IF networks using some of the ideas
presented in this article.
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