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CHAOTIC SPIKES ARISING FROM A MODEL OF BURSTING IN
EXCITABLE MEMBRANES*
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Dedicated to the memory of Joseph Terman.

Abstract. A class of differential equations that model electrical activity in pancreatic beta cells is
considered. It is demonstrated that these equations must give rise to both bursting solutions and, for different
values of the parameters, continuous spiking. We also consider how the number of spikes per burst changes
as parameters in the equations are varied. This transition may be continuous, in which case the period of
the bursting solution increases significantly and then decreases. Hence, small perturbations may cause
macroscopic changes in the bursting solution. This transition may also give rise to chaotic dynamics due to

the existence of a Smale horseshoe.

Key words, bursting, excitable membranes, chaotic dynamics

AMS(MOS) subject classifications. 58F13, 34C35, 92A09

1. Introduction. In this paper, we study the qualitative behavior of solutions to
mathematical models for electrical activity in pancreatic fl-cells. These cells are respon-
sible for the secretion of insulin. Atwater et al. [2] found that at certain levels of
glucose concentration, the membrane potential of the beta cell underwent sustained
oscillations of the burst type. Moreover, at higher glucose concentrations, the bursting
gave way to continuous spiking or beating. The first theoretical model for this
phenomena was given by Chay and Keizer [4]. This model consists of five first-order
nonlinear differential equations ofthe Hodgkin-Huxley type. Later, Chay [3] simplified
this model to a first-order system of three equations. Both the original and reduced
Chay and Keizer models display many of the qualitative features observed in experi-
ments. In particular, these models contain a parameter kca, which increases with
glucose concentration. Numerical studies of Chay and Keizer [4], Chay [3], and Chay
and Rinzel [5] have demonstrated that both of these models exhibit bursting solutions,
and, at higher values of kca, these bursting solutions give rise to continuous spiking.
The numerical and experimental results indicate that the transition from bursting to
continuous spiking is a chaotic one.

In [12], Rinzel describes several mathematical mechanisms for burst generation.
We consider one such mechanism; this includes the reduced Chay and Keizer model.
See Rinzel [13]. We demonstrate, both analytically and numerically, that this type of
model may give rise to chaotic solutions as parameters in the equations are varied.
The chaotic solutions arise, mathematically, due to the existence of a Smale horseshoe.

The equations we consider are autonomous systems of ordinary differential
equations. Following Rinzel [12], we say that a solution to the equations is bursting
if it is a periodic solution whose behavior alternates between near steady state behavior
(the passive phase) the trains of spike-like oscillations (the active phase). An example
of a bursting solution is shown in Fig. 12. The system of equations consists of fast and
slow subsystems. If we think of the variables of the slow subsystem as parameters,
then the fast dynamics will have a branch of stable rest points and a branch of stable
periodic solutions. The bursting solution will then be a closed orbit in phase space,
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1419

which, in the passive phase, passes close to the branch of stable rest points. The trains
of rapid spikes correspond to the closed-orbit passing close to the branch of periodic
solutions.

We say that the system gives rise to continuous spiking if there exists a stable
closed orbit that always lies close to the branch of periodic solutions.

We prove that these models must give rise to both bursting solutions and, for
other values of the parameter kca must give rise to continuous spiking.

We also study how the number of spikes per burst changes as parameters in the
slow subsystem change. We see that this can take place in two distinct ways depending
on the structure ofthe slow dynamics. One possibility is that there is a smooth transition;
for all values of the parameters, there exists a stable periodic solution whose trajectory
in phase space changes in a continuous fashion as the parameters are varied. What is
interesting about this type of transition is that as the number of spikes change, the
period of each burst increases in size. Hence, small perturbations of the slow dynamics
cause macroscopic changes in the bursting solution. See Fig. 13.

The transition from n to n + 1 spikes need not be continuous; during this transition,
the flow may give rise to a Smale horseshoe. We show in 6 (see Remark 2 following
Proposition 6.4.2) that the existence of the horseshoe implies that if {ak} is any biinfinite
sequence of integers with ak { n, n + 1}, -- < k < c, then there must exist a burstlike
solution of the equations such that the number of spikes in the kth burst pattern is ak.

Our approach to this problem is quite geometrical. We prove the existence of a
bursting solution by demonstrating that a certain Poincar6 return map has a fixed
point. The existence of chaotic solutions follow by showing that the Poincar6 map
gives rise to a Smale horseshoe. In order to define the Poincar6 map and demonstrate
that it has the correct properties, it is necessary to define various geometrical objects
in phase space. It is important to understand how trajectories in phase space are
mapped from one of these geometrical objects into another, and through which sides
of the geometrical objects a trajectory may leave or enter.

This type of geometrical argument has been used by others to study singular
perturbation problems arising from models for excitable membranes. See, for example,
Cronin [6]. Aperiodic and chaotic solutions have also been studied for models in
which the slow subsystem acts independently as a forcing function to the fast subsystem.
For such models, Ermentrout and Kopell [8] and Alexander, Doedel, and Othmer [1]
discuss the transition from n to n + 1 spikes.

An outline of the paper is as follows. In 2, we state precisely what assumptions
we require for a bursting solution. In 3, we define the basic geometrical objects in
phase space. The existence of a bursting solution is proved in 4. In 5, we prove
that for certain values of the parameters, the system must give rise to continuous
spiking. In 6, we study the transition from n to n + 1 spikes. To do this we must
introduce a notion of winding number. This corresponds to the number of spikes per
burst for bursting solution. In 7, we support our analytic results with numerical
computations.

2. Assumptions. We consider a system of ordinary differential equations of the
form

v’=fl(v,w,y),

(2.1) w’=f(v,w,y),

y’= eg( v, w, y, k).
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1420 D. TERMAN

Here, e is a small positive parameter, and fl, f2, and g are smooth functions. We
consider y to be the slow variable. If we let f(v, w, y)= (fl,f2), then by the fast
subsystem we mean the equations

(FS) f(v, w, y).

Here, y is thought of as a parameter.
In the hope of keeping the notation somewhat manageable, we introduce the

following conventions. Our first assumption will be that the set of rest points of (FS)
is an S-shaped curve O in the three-dimensional (v, w, y) phase space. We denote the
upper branch of by UB, the middle branch by MB, and the lower branch by LB.
the letters l, L, and will be reserved for any object associated, in some way, with
LB. Similar statements hold for MB and UB. The left and right knees of also play
a central role in our analysis. The letters A and p will be reserved for any object
associated with the left and right knees, respectively.

We have chosen the assumptions so that, for a specific system, they can be easily
verified, numerically, using a standard ordinary differential equation solver. The first
five assumptions are concerned with the two-dimensional system (FS), while the last
two assumptions are concerned with the zero set of g(v, w, y, k). The assumptions
listed below are those required to prove the existence of a bursting solution. Further
assumptions will be given later when we consider the existence of continuous spiking
and horseshoes.

In what follows, the reader is referred to Fig. 1.

(A1) The rest points (FS) consist of a smooth, S-shaped, curve O in phase space.
That is, there exists A < p such that
(a) If y < A, then (FS) has precisely one rest point, which we denote by l;
(b) If y > p, then (FS) has precisely one rest point, which we denote by uy;
(c) If A < y < p, then (FS) has precisely three rest points. These are denoted

by ly, m, and Uy;
(d) The rest point at the "left knee," for y A, is denoted by Ka, and the

rest point at the "right knee," for y p, is denoted by Ko;
(e) The union of all the above rest points form a smooth curve, which we

denote by .
(A2) Each of the rest points ly is an attractor, as a solution of (FS). Each of the

rest points my is a nondegenerate saddle. We denote the two trajectories in
the unstable manifold of my by M(t) and M(t).

(A3) There exists h(A,p) such that M(t) is homoclinic to mh; that is,
lim,M(t)=mh. If y (A, p), then limtM(t)=ly. If y (A, h), then
lim M(t) ly.

(A4) There exists o> 0 such that if h < y < p + o, then there exists an asymptoti-
cally stable periodic solution py(t) of (FS). This periodic solution surrounds
uy, but not ly or my. The union of these trajectories define a continuous branch
of solutions, which terminate at M(t) as y h. Let be the union of all
these periodic solutions.

Remark. In Fig. 2, we illustrate the phase planes corresponding to (FS) for three
different values of the parameter y in order to demonstrate how the trajecto M(t)
changes as y passes through the critical value y= h. In each of these figures,
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1421

W

v M +
h

+

M

LB

, h p y

FIG. 1. LB, MB, and UB are the branches of rest points of (FS). For y > h there is a periodic solution

py which surrounds UB. These periodic solutions terminate at the homoclinic orbit M. For A < y < p, the
trajectories in the unstable manifold of the middle branch are denoted by M-; and M.

M +
y

my

M + v

a) Z,<y<h b) y=h c) h<y<p

FIG. 2. The phase plane of (FS) for three different values of y. If X < y < h, then each trajectory in the
unstable manifold of m approaches ly as oo. Ify h, then one of these trajectories is a homoclinic orbit. If
h < y < p, then this trajectory approaches the periodic solution py as oo.

lim,_oo M-;(t) ly. In Fig. 2(a), we assume that h < y < h. In this case lim,_.oo M-(t) ly.
In Fig. 2(b), y h, and M-(t) is the homoclinic orbit. Finally, in Fig. 2(c), h < y < p.
In this case, M-(t) approaches the periodic orbit py(t), as t- oo.

We now need an assumption which will allow us to conclude that for 0 < e << 1,
solutions of (2.1) which pass close to the right knee must then pass close to the branch
of periodic solutions, while solutions of (2.1) which pase close to the left knee must
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1422 . rZMaN

then pass close to the lower branch. In what follows, W(yo) will be the omega limit
set of the solution of (2.1) with e 0 which passes through 3’o.

(A5) There exists a neighborhood o of Ko such that if 3’o--(Vo, Yo, Wo) o, then
either 00(7o)= myo, 00(3,o)= lyo, or 00(3’o)=Pro. There exists a neighborhood
a of K such that if 3’0 Ky, then either 00(yo)= myo, 00(To)----- lyo, or 00(3,o)=
Hy

The final assumptions are concerned with the slow dynamics.

(A6) There exists ko < ka such that if ko < k < k, then there exists a smooth function
v h(w, y, k) such that g(v, w, y, k) 0 if and only if v= h(w, y, k). Moreover,
g(v, w, y, k)<0 if and only if v> h(w, y, k). If M= {(v, w, y)" v= h(w, y, k)},
then M 6e my for some y (,, ).

Remark. This assumption implies that for k (ko, kx) and e > 0, there is precisely
one fixed point of (2.1). This is the point my on the middle branch.

Let + {(v, w, y)" v > h(w, y, k)} and {(v, w, y)" v < h(w, y, k)}.

(AT) If ko < k < kx, then LB -. Moreover, there exists a unique kh
such that y h. If/co < k < kh then d//+k

Remark. This last assumption implies that if k (ko, kx), e > 0, and (v, y, w) lies
near the lower branch, then y’= eg(v, y, w, k) > 0. Moreover, if, ko < k < k, e > 0 and
(v, y, w) lies near , then y’< 0. Note that if k kh and e > 0, then the fixed point of
(2.1) is mh. This is the homoclinic point for (2.1) with e 0.

Remarks. (1) These assumptions can be verified, at least numerically, for the
fl-cell models mentioned in the Introduction, if we make a suitable interpretation of
the variables. Here, v corresponds to the potential difference between the inside and
outside of the cell, w corresponds to the potasssium channel state variable, and y is
related to the calcium concentration. In the original/3-cell model variables, (2.1) gives
rise to a "z-shaped" curve instead of our "S-shaped" curve. The parameter k corre-
sponds to kc mentioned in the Introduction.

(2) Note that we do not assume anything about the rest points Uy. This is because
the periodic and chaotic solutions which we consider in the later sections do not ever
approach the upper branch. It is possible, for example, that there exists 97> h such
that the rest points Uy are stable for y > 37 and undergo a Hopf bifurcation as the
parameter y decreases past 37. This is what happens for the system (7.1.1).

(3) The essential reason why a burst-like solution exists is the following (see Fig.
3(a)). Suppose that y(t) is a solution of (2.1) with 0<e<< 1, k(ko, kh), and assume
that y(0) lies close to the lower branch. Because y’> 0 near the lower branch, y(t)
will travel slowly to the right, up the lower branch. This corresponds to the passive
phase of the burst. 3’(t) will travel up the lower branch until it is pushed past the right
knee. At this point, the fast dynamics take over the y(t) quickly travels close to
the branch of periodic solutions. Because y’< 0 near the periodic solutions, y(t) will
loop around , slowly moving to the left. This corresponds to the spike train or active
phase of the burst. The spiking will continue until y(t) is pushed to the left of the
homoclinic trajectory. It is not clear, at this point, how y(t) behaves once it passes
the homoclinic trajectory. However, it is reasonable to expect that eventually the fast
dynamics force 3/(t) back to the lower branch, and the whole process starts over again.
A key step in finding the chaotic solutions is in understanding how y(t) behaves as it
passes the homoclinic trajectory. We see that y(t) must, at some point, lie close to
one of the unstable trajectories M-(t) or M(t) defined in (A2). This is illustrated in
Fig. 3(b).
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1423

J

FIG. 3(a). The trajectory of a bursting solution in phase space. In the passive phase, the solution lies close
to the lower branch. The trains of rapid spikes correspond to the solution passing close to the branch ofperiodic
solutions.

3. Pillboxes, tubes, etc. We now define various neighborhoods in phase space.
These neighborhoods will allow us to keep track of trajectories as they loop around
in phase space. The basic idea is to put "pill boxes" about the left and right knees,
"tubes" about the lower and middle branches, and annuluslike regions about the
periodic solutions. Of course, these neighborhoods must be defined with care so that
they fit together properly. Moreover, we must make sure that trajectories enter and
exit them in a proper fashion. Throughout this section, we assume that kp < k < kh.

The pill boxes and tubes will be homeomorphic images of the unit cube

C ={(x, s, z)" Ixl < 1, Isl-< 1, Izl < 1}.

We denote the open sides of C by

CL int {(x, s, z) C" s -1}, CR=int{(x,s,z)C" s +1},

CBT=int{(x,s,z)C" z =-1}, CT=int{(x,s,z)C" z=+l},

CBK=int{(x,s,z)C’x=-l}, Cz=int{(x,s,z)C’x=+l}.

Let /3 be the (v, w, y) phase space. Let Zry" E E be the projection map given
by try(V, w, y) y.
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1424 D. TERMAN

B)

FIG 3(b). A bursting solution may lie close to the middle branch for a long time before leaving it. This
gives rise to the plateau region in a bursting solution.

DEFINITION. Suppose that R R and " R E3. We say that is a y-homeo-
morphism from OR into E if

(a) is a homeomorphism from R onto its image.
(b) If (Xl, Sl, Zl) OR and (x2, s2, z2) OR with Sl --< s, then

(Try (I))(Xl Sl Zl __< (Try (I))(X2 S2 Z2).

All of the maps considered in this section will be y-homeomorphisms. Condition (b)
is natural, because y is the slow variable which is considered as a parameter when
e 0. In what follows, 6 will be a small positive constant which may decrease in size.

3.1. The right knee and lower branch. The following two propositions follow easily
from the assumptions stated in the previous section. In the first proposition, we define
a neighborhood No of the right knee. In the second proposition, we define a neighbor-
hood N/ of the lower branch. It will be attracting in the sense that for e 0, solutions
of (2.1) which lie on ONL must enter NL in forward time. These sets are constructed
so that the right side of N is contained in the interior of the left side of No. When e
is small, trajectories which lie in N must eventually enter N
through its top side. See Fig. 4

PROPOSITION 3.1.1. There exists a y-homeomorphism p: C--> E such that
(a) Ko int (o(C)).
(b) o(C)= J//-{(v, w,y): y<p+ 6o} where 60 was defined in (A4).
(c) If e=O and y(t) is a solution of (2.1) with y(to)6int(p(C)), then y(t) can

only leave o(C) through o(Cr ). Ify( t) does leave o( C), then w( y( t))
the manifold ofperiodic solutions defined in (A4).
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1425

MB

NL
/

/

T
N

UB

Y, P Y

W

FIG. 4. If e > 0, then solutions of (2.1) which lie in NL must enter N through Lo and can only leave
through To

(d) If e=O and 3/(t) is a solution of (2.1) with 3/(to)OaPp(C), then 3 is not
tangent to Oapp (C).

Let Np=CP,(C), T, =,(CT), L, =,(CL), and y,=(,ry p)(CL). Note that y, is
well defined, because p, is a y-homeomorphism.

Our next result follows from the previous proposition and the continuous depen-
dence of solutions to an ordinary differential equation on a parameter. It states that
if e is sufficiently small, then any solution of (2.1) which crosses the left side L, of
N, must enter Np and then leave N, through its top side T,.

COROLLARY 3.1.2. If e > 0 is sufficiently small and 3/(t) is a solution of (2.1) with
3 L,, then there exists tl > to such that 3/( t) N, for to < < tl and 3/( t) Tp.

We now consider the lower branch. The following results follow easily from the
assumptions.

PROPOSITION 3.1.3. There exists a y-homeomorphism aPL C -> E3 such that ifNL
L(C), then

(a) lyNforA-<-y<-y,;
(b) NL -;
(c) ( oq>)(c)=-;
(d) (ry CL)(CR)=y and dL(CR)C L;
(e) Ife O, and 3/(t) is a solution of (2.1) with 3/(0) 0(NL) CI {(v, w, y): h < y <

y,}, then 3/(t) enters Nz., transversely, in forward time.
COROLLARY 3.1.4. If e > 0 is sufficiently small and 3/( t) is a solution of (2.1) with

3/(t0) NL, then there exists tl >-- to such that 3/(t) NL for (to, t) and 3/(h)

Combining Corollaries 3.1.2 and 3.1.4 we obtain the next result.
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1426 D. TERMAN

COROLLARY 3.1.5. If e > 0 is sufficiently small and y(t) is a solution of (2.1) with

3 NL, then there exists t2 > tl > to such that 3/( t) NL for (to, tl), 3/(tl) L,,
3/( t) No for tl < < t2, and 3/(t2) To.

3.2. The left knee. We now define a neighborhood of the left knee in a manner
similar to what we did for the right knee. The following result follows easily from our
assumptions.

PROPOSITION 3.2.1. There exists a y-homeomorphism ;‘ C - E such that if N;‘
dp ;‘ (C), then

(a) K;‘ N;‘;
(b) N;‘ /+;

(3.2.1) (c) If e=0 and 3/(t) is a solution of (2.1) with 3/(to)ON;‘, then 3 is
not tangent to ON;,;

(d) If e 0 and 3/( t) is a solution of (2.1) with 3 N;‘, then for > to,
3/( t) can only leave N;‘ through ;‘( Cn-). In this case, there exists t > to
such that 3/( t) N.

Let B;‘ ;‘ (Cn-), R;‘ ;‘ Ca ), and y;‘ r ;‘)( Ca ).
The next result follows from the previous proposition and the continuous depen-

dence of solutions on a parameter.
COROLLARY 3.2.2. If e > 0 is sufficiently small, and 3/( t) is a solution of (2.1) with

y( to) R;‘, then there exists t2 > t > to such that 3/( t) N;‘ for (to, t), 3/( t) B;‘, and
3/(t2) NL.

3.3. The middle branch. We now construct a "tube" Nt, which contains the
middle branch for y;‘ =< y =< h + 61 for some 61 > 0. It will be important to keep track of
which sides of N4 trajectories may leave or exit, and where trajectories go once they
do leave N4.

PROPOSITION 3.3.1. There exists a 81>0, and a y-homeomorphism 4" C- E
such that if N4 t(C), and 3/(t) is a solution of (2.1) with e=0, then

(a)
(b) N4 c

(c) t(CL)c R;‘ and (ry ot)(CR)= h+ 61;
(d) If 3/( to) vt(CT) kJ 4(CB-), then 3/(t) enters Nt, transversely, in forward

time;
(e) If 3/( to) 6 p4( CF) kJ dp4( CBl ), then 3/(t) leaves Nt, transversely, in forward

time. Moreover, there exists tl > to such that 3/(t) Ntfor (to, tl), and either
3/(tl) Na4, or 3/( tl) 6 N.

(f) If h < y <- h + 61, then each of the periodic solutions py(t) enters N4 and crosses
o c, ).

Proof Throughout this proof we consider solutions of (2.1) with e 0. We change
coordinates so that near the middle branch, (2.1) becomes

p’=Al(y)p+gl(p,q,y),

(3.3.1) q’=-A2(y)q+g2(p,q,y),

These equations hold for, say, Ip] <-- a, ]q[ _--< 8, and y;‘ _-< y _-< h + 8. Here h I(Y) and -h2(y)
are, respectively, the positive and negative eigenvalues of (FS) linearized at the rest
points my. The functions gl(P, q, Y) and g2(P, q, y) are both o([p]+]q]) and satisfy

(a) gl(O,q,y)=O for [q]<=6 and y<=y<-h+;
(b) g2(p,O,y)=O fo.r ]p]_-<6 and
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1427

Therefore, the local stable manifold at my1, ya <-Yl <= h + 3, is given by {(p, q, y): p
O, Y=Yl}, and the local unstable manifold is given by {(p, q, y): q=0, Y=Yl}. The
unstable manifold at my consists of two trajectories, which, as in 2, we denote by
M-f(t) and M-;(t). We assume that the local coordinates are chosen so that for
y<-_ y<=h+ 3,

M;(O) (-3, O, y) and M-(O) (3, O, y).

Assume that ql, q2, and 31 are positive constants with max {ql, q2, 31} 3. Consider
the rectangular neighborhood given by

R R(q,, q, 31)= {(p, q, y): Ipl--< , -q2 -< q--< q,, Yx < Y < h + 3,).

We denote the sides of R by

Rv {(p, q, y) R: p -3, -q < q <

R {(p, q, y) R: p 3, -qa < q <

RT {(p, q, y) R: Ipl < 6, q ql},

Rno T {(P, q, Y)6 R: Ipl < , q -q}.

By choosing 3 smaller, if necessary, we may assume that R +, trajectories enter R
through Rr U RBo r, and leave R through RF U RB. Note that M;(t) leaves R through
RF, and Mf(t) leaves R through Rn.

Let M:CR be a y-homeomorphism such that qM(C) R(ql, q2,

(DM(CT)-- RT, (M(CBT)-" RBoT, fkM(CF)-- RF, and (I)M(CBK)-- RB. This map
satisfies (a)-(d) of the proposition. We now show that it is possible to choose the
constants ql, q2, and 31 so that M satisfies (e) and (f).

In order to verify (e), we must demonstrate that each trajectory which leaves R
must eventually either return to R or enter NL. Note that trajectories can only leave
R through RF or Rs. Suppose that y [yx, h + 31] and yq(t) is the solution of (2.1)
with e 0 and yq(O) (-3, q, y) RF. Since yo(t) M-f(t) -> ly as --> m, it follows that
if Iql is sufficiently small, then yq(t) NL for some > 0. Therefore, if ql and q2 are
sufficiently small, then every trajectory which leaves RF must eventually enter NL.

We now consider trajectories which leave R through Rs. For y e [ya, h + 31], let
yq(t) now be the solution of (2.1) with e=0 and yq(O)=(3, q,y)eRs. If ye[ya, h),
then yo(t)= M(t)--> ly as t-->. It follows that given 31, qo can be chosen so that if
yx < y < h 31 and [q[ < qo, then yq(t) NL for some ->_ 0.

Now suppose that [y-hi < . If q and 31 are sufficiently small, then yq(O) lies
close to M(0). The trajectory M(0) returns to R for some > 0 no matter how the
constants ql, q2, and 31 are chosen. It is not hard to see that ql, q, and 31 can be
chosen so that if Ih-yl< 6 and -ql<q<q2, then yq(t) must also return to R. See
Fig. 5. This verifies (e) of the proposition.

Finally, consider the periodic solutions py(t). These trajectories approach M2(t)
as y- h. Recall that M-(t) leaves R through RB @M(CnK). Therefore, choosing
smaller, if necessary, we can guarantee that if h<y<h+31, then py(t) crosses
R.

We conclude this section by considering solutions of (2.1), with e 0, which pass
close to MB.

COROLLARY 3.3.2. If e is sufficiently small and y(t) is a solution of (2.1) with
y(t0) 6 NMfOr some to, then there exists > to such that y(tl) NL. Moreover, y(t) can
only leave NM through M(CF), M(Csc), or M(CL).

D
ow

nl
oa

de
d 

12
/3

1/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1428 O. TERMAN

RBoT

FIG. 5. Various objects used in the proof of Proposition 3.3.1. In (a), h-6l< y<h, while in (b),
h < y < h + 61 In both cases, solutions which leave R through RB must, at some later time, enter R through

Proof Since y’< 0 in N4, y(t) must certainly leave N4. From the preceding
proposition, continuous dependence of solutions on a parameter, and the fact that
y’< 6 in N4, it follows that if e is sufficiently small, then 2’(t) can only leave NM
through d4(CF), I(CBK), or 4(C/). If y(t) leaves Nu through 4(C/), then it
follows from Corollary 3.2.2 that 3’(tl) NL for some tl > to. If 3’(t) leaves NM through
d4(CF)LJ4(CBI), then from the preceding proposition, either y(t) returns to N
or y(tl) NI for some tl > to. However, for e > 0, y(t) can certainly only return to
N a finite number of times without crossing through NL.

3.4. The periodic solutions. Recall from (A4) that each of the periodic solutions,
Pr(t), is asymptotically stable as a solution of (FS). Hence, for each y (h, p + 60) there
exists a compact neighborhood of py(t) in (v, w) phase space which is attracting. For
this reason, the following proposition follows easily. For the statement of the result
we let

A={(x, s, z)" 1/2_-<xZ+z2<-2,-1 =<s-<_ 1},

Ep {(x, s, z) A: x 0, z < 0},

AL= {(x, s, z) A: s =-1},

AR ((x, s, z) 6 A: s +1},

An {(x, s, z) OR" Is[ < 1},

,L-’- AL I ,p.
PROPOSITION 3.4.1. There exists a y-homeomorphism p"A- E such that ifNp

dpp (A), and y(t) is a solution of (2.1) with e O, then

(a) Np c +;
(3.4.1) (b) If y(to)p(An), then y(t) enters Np, transversely, in forward time;

(c) (TrrodPp)(A)=h+61, and (yoe)(A)=p+6o;
(d) p(Z)= O(Cr).

The reason we can choose (I)p SO that (3.4.1)(d) holds is because of Proposition
3.3.1(f). From continuous dependence, it follows that if e is sufficiently small, then
every solution of (2.1) which lies in dp(Ar) must enter N4. Moreover, if e > 0, then
y’< 0 in Np. Therefore, if e is sufficiently small, then every solution of (2.1) which
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1429

lies in Np, must leave Np through p(At).and then enter NM. By choosing e small
we can guarantee that when this trajectory enters NM it does so at a point whose
y-coordinate satisfies y> h. This is because of (3.4.1)(c). We summarize this last
paragraph in the next corollary.

COROLLARY 3.4.2. If e is sufficiently small and y(t) is a solution of (2.1) with
Y( to) Np, then there exists t2> t1> to such that y(t) Npfor to<= <-/1, "Y( tl) dPp(AL),
y(t) Jl+ for t (to, t:), and v(t_) Na4. Moreover, 7ry(y(t)) > h.

4. Existence of a bursting solution. We now use a fixed point argument to show
that there must exist a periodic solution of (2.1) if k < k < kh and e is sufficiently
small. This corresponds to the bursting solution. We demonstrate that for e sufficiently
small, the set T, which was defined following Proposition 3.1.1, is mapped continuously
into itself by the flow. The existence of a periodic solution then follows from the
Brouwer fixed point theorem. See Fig. 6.

Fix yo To, and let ),(t) be the solution of (2.1) with y(0)= %. If e=0, then
y(t) approaches one ofthe periodic solutions py (t) as . Therefore, if e is sufficiently
small, then 3’(t) Ne for some t > 0. We now apply Corollaries 3.1.5, 3.3.2, and 3.4.2
to conclude that there exists eo such that if 0 < e < eo, then there exists 4 > t3 > t2 > t
such that y(t2) G NM, 3/(t3) G NL, and y(t4) G To. Let F(yo) y(t4). Certainly, eo can be
chosen independently of yo, and F is continuous. Hence, F must have a fixed point.
This fixed point, of course, corresponds to a periodic solution of (2.1).

5. Continuous spiking. In this section we consider the existence of continuous
spiking. Recall that this corresponds to a stable periodic solution of (2.1) which always

FIG. 6. Various sets used to prove the existence of a bursting solution. Every solution of (2.1) which lies
in NL must, at some later time, lie in No, Np, NM, and then return to NL.
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1430 D. TERMAN

lies near the manifold g. For our result, it will be necessary to make two additional
assumptions concerning the nonlinear functions in (2.1). The first assumption is
concerned with the periodic solutions py(t) of (FS). Since (FS) is two-dimensional,
each solution py(t) can have only one Floquet multiplier, say fly, which is not unity.
We assumed, in (A4), that each trajectory py(t) is asymptotically stable. Hence, Iflyl <-- 1.
We now make the following additional assumption.

(A8) There exists a, h < a < p, such that if h < y < a, then I/3y[ < 1.

This assumption will allow us to conclude that the two-dimensional, invariant manifold
g perturbs for e small.

For our second additional assumption, we recall the notation defined in (A6).

(A9) If kh < k < k, then Og/Ok(v, w, y, k) > 0 in some neighborhood of the homo-
clinic orbit M-(y).

Remark. This last assumption is satisfied for the/3-cell models mentioned in the
Introduction. For those models, Og/Ok > 0 everywhere.

In (A7), we assumed that if k-kh, then c M{. In particular, p(t) Mkh for
all t. Choose ko(kh, k] so that if k[kh, ko], then p(t)M- for all t. We can now
state the main result of this section.

THEOREM 5.1. Assume that kh < k < ko. If e is .sufficiently small, then (2.1) gives
rise to continuous spiking.

Remark. The range of e for which the theorem holds depends on the choice of k.
Proof Fix k(kh, ko). For 3<(a-h)/10, let S={(v, w,y):

We use assumption (AS) and Fenichel [9] to conclude that S perturbs, for e

sufficiently small, to a smooth, two-dimensional invariant manifold, which we denote
by . The constant 3 will be specified later. We will show that 3 can be chosen so
that if e is sufficiently small then there must exist a periodic solution which lies on. The proof will use a fixed point argument. To set things up, we first consider the
case e 0.

Let E be a two-dimensional section which contains each of the points py(0),
h + 3 < y < a 3, and is transverse to the flow given by (2.1) with e 0. We may assume
that py(0) depends continuously on y. Hence, Z VI is a continuous curve on E. If e
is small, the E will still be transverse to the flow. Moreover, E will be a continuous
curve which is the homeomorphic image of some function q :[-1, 2] Z. Let zry be
the projection map defined in 3. We may assume that ry(q(-1)) h + 3, Zry(q (0))
h+23, Zry(t(1)) a --23, Zry(b(2))--a- 3, and if-2<sl <s2< 1, then

r(q,(s)).
Let y,s(t) be the solution of (2.1) with y,s(0)= 0(s). If e =0, then for each

s[-1,2], yo,(t) is periodic. Hence, there exists t such that yo,s(t)C-E for 0<t < t
and yo,(ts)= yo,(0)E. If e is small, and 0_< s_-< 1, then there exists t,s such that
y,s(t) E for 0 < < t,s and y,(t,) E. Of course, t, --> ts as e -> 0. Moreover, since

is invariant, y,(t,)f3E. Hence, for s[0,1], (s)=q-(y,(t,)) is a
well-defined continuous map from [0, 1] into [-1, 2]. We will prove that for e small,

has a fixed point. That is, there exists an So [0, 1] such that y,o(t,so)=q(So)
y,o(0). This implies that Y,o(t) must be a periodic solution. To prove that has a
fixed point we will prove that if e is sufficiently small, then (0)> 0 and (1)< 1.
This is equivalent to proving that 3 can be chosen so that for e sufficiently small,

(5.1)
(a) Zry( y,o( t,o)) > h+23,

(b) ry(T,l(t,)) < a -23.
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1431

To prove (5.1)(b), we use the assumption that if k[kh, ko] then p(t)M- for
all t. This implies that if 6 is sufficiently small, then p_2(t) {(v, w, y): g(v, w, y, k) < 0}
for all t. Therefore, if 3’,1 (t) (V,l (t), w,l (t), y,(t)) and e is sufficiently small, then
y’,(t) <0 for [tl <2t,,. Hence, 7ry(3,,l(t,l))=y,l(t,l)<y,(O)=a--26.

It remains to prove (5.1)(a). We must be careful with our notation because the
trajectory 3’,o(t) and the constant t,o depend on the parameters e and & We will now
write

T(e, 6, t)= (v(e, 6, t), w(e, 6, t), y(e, 6, t))

for 3’,o(t), and t(e, 6) for t,o. Note that 3,(0, 6, t)=Ph+2a(t). Therefore, the trajectories
3,(0, 6, t) approach the homoclinic trajectory M(t) as 6-->0, and t(0, 6)--> as 6-->0.
Now (5.1)(a) will follow from the following result.

LEMMA 5.3. Fix k kh, ko). Then 6o can be chosen so that if 0 < 6 < 60, then there
exists e(6) such that if 0< e < e(6), then y(e, 6, t(e, 6)) > y(e, 6, 0).

From the last equation in (2.1) we find that this lemma will follow if we can
choose e and 6 so that

t(e,)

(5.2) g(3,(e, 6, t), k) dt>O.
dO

In what follows, we let k be such that Yk--h +26. Here we are using the notation
defined in (A6). Then

t(,,)

(5.3) g(3,(e, 8, t), k) dt A(8)+ B(8)+ C(e, 8),
dO

where
(’a)

A(6) g(ph+(t), k) dt,

t(0,6

B()= [g(p+(t), k)-g(p/(t), k)] dt,
dO

f t(e,) f t(O,)

C(e, 6)= g(3,(e, 6, t), k) dt- g(ph+2(t), k) dt.
dO dO

We claim that A(6) is uniformly bounded. That is, there exists a constant Ko such
that

(5.4) [A(6)I < Ko for all 6.

To prove this, recall that the trajectories Ph+z6(t) approach the homoclinic orbit M-(t)
as 6 - 0. Hence, (5.4) will follow if we can prove that I-oo g(M-(t), kh) dt is bounded.
This last statement holds because M-(t)--> mh exponentially as }tl-->oe, g(rnh, kh)=0,
and g is a smooth function.

We next consider B(6). From the mean value theorem,
(o,a) Og

(5.5) B(6)= -- (ph+2(t), rl(t))(k-ka) dt

for some function r/(t) (k, k), (0, t(0, 6)). From assumption (A9), we can choose
r/o > 0 so that

(5.6)
Og

ok
(Ph+2(t)’ r/(t))> r/ fort6(O, t(0, 6)).
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1432 D. TERMAN

We assume that 6o is chosen so that if 0 < 6 < 60, then

k+ kh(5.7) k <
2

It then follows that if 0 < 6 < 60, then

(k-kh) t(O, t3).(5.8) ()> o

Recall that t(0, 6) m as 6 0. We assume that 6o is chosen so that

(k-kh) t(O, 6)>4Ko(5.9) r/o
2

for e (0, 60).
Now fix 6(0, 60) and consider C(e, 6). Note that T(e, 6, t)ph+2(t as e0,

uniformly for (0, t(e, 6)). Moreover, t(e, 6) t(O, 6) as e -0. Therefore, there exists
e (6) such that if 0 < e < e (6), then

(k-k)t(0,6).(5.10) [C(e’ 6)[<= rl 4

Combining (5.3), (5.4), (5.8), (5.9), and (5.10), we conclude that (5.2) holds
This completes the proof of Lemma 5.3, which in turn implies that e and 6 can

be chosen so that (5.1)(a) holds. From our previous remarks, this demonstrates that
there must exist a periodic solution on . Using (A8) and the fact that the flow on

is two-dimensional, it is not hard to see that there must, in fact, exist a stable
periodic solution on . [3

6. The transition from n to n + 1 spikes.
6.1. Introduction. Throughout this section we assume that ko < k < kh. In 4 we

proved that, in this case, there must exist a bursting solution for e sufficiently small.
By one "burst" of the bursting solution, we mean one period of the solution. It is easy
to see that as e approaches zero, the number of spikes per burst becomes unbounded.
This is because the bursting solution spends an increasing amount of time near the
branch of periodic solutions . We consider how the number of spikes per burst
increases as e decreases. To do this we must first define a notion of winding number
for each bursting solution. This corresponds to the number of spikes per burst. It is
equal to the number of times the solution winds around the upper branch during one
period. There are actually two ways in which a solution y(t) of (2.1) can wind around
the upper branch; either y(t) lies close to one of the periodic solutions py (t), or it lies
close to one of the trajectories M-(t). The key to locating the Smale horseshoe will
be to understand how this winding number changes as e is varied. We demonstrate
that the winding number can change only if y(t) passes close to the left knee K. This
implies that the width of each burst increases during the process of adding one spike.
In order to make this precise we first, need to understand the set of all trajectories
which pass close to the left knee.

6.2. The "stable manifold" of the left knee. Consider (2.1) with e--0. For each
y (A, p), my is a saddle with two trajectories in its stable manifold. Let W4 be the
union of all of these trajectories. Then Wa4 is an invariant, two-dimensional manifold;
it is in the center stable manifold of the middle branch. Because each of the rest points
my, A < y < p, is hyperbolic, W perturbs, for small e, to an invariant, two-dimensional
manifold which we denote by W4(e). See Fenichel [9].
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1433

Note that W4 divides NM into two closed regions. Therefore, if e is sufficiently
small, then W4(e) divides N4 into two closed regions, which we denote by N and
N. We assume, without loss of generality, that each of the trajectories M(t) leaves
N4 through N4, and each of the trajectories M-(t) leaves Nu through NG. Let
N f’) u(CL). This is the "left side" of N, which lies close to the left knee K.
Suppose that e is sufficiently small, and 3/(t) is a solution of (2.1) with 3/(to)

WM(e)f’) N. Then, from Corollary 3.3.2 there exists tl > to such that

3/(t)Nt for t(to, tl) and 3/(tl)dP(CF)Id(CB)UM(CL).

Since W4(e) lies close to W, and W f3 ( (CF) UM(CB/)) , we conclude
that 3/(tl)d(Ci), the left side of N. Therefore, each trajectory in W(e) must
intersect N and leave N4 through its left side 4(CL).

6.3. The winding number. Throughout this section we assume that e >0 is
sufficiently small. Fix 3/o Nt_J No and let 3/(t) be the solution of (2.1) with 3/(0) 3/0.

We now define what we mean by the winding number to(3/o) of this trajectory with
respect to 3/0.

In 3 we saw that there exists t2> tl>0 such that 3/(t) N No for O<=t<=tl,
3/(t) Ntl,] No for t<t<t2, and 3/(t2) NLI..J No. LetE=p(.,p)l,.JM(fm,:)t.JEx,
where p(Ep) was defined in 3.4, 4(Con) was discussed in 3.3, and Ex was
defined in 6.2. Let to (3/o) equal to the number of times 3/(t) intersects E for0< < t2.
Note that 3/ (t) can only intersect E transversely. Hence, to(3/o) depends continuously
on e and 3/0.

In our next result we study how the winding number changes as e is varied.
PROPOSITION 6.3.1. Suppose that 0 < el < e2 are sufficiently small, 3/0 NL k.J No and

to(3/o) to2(3/o). Then there exists e (e 1, e2) such that 3/0 W4 (e).
Proof. Because the trajectories 3/,(t) cross E transversely, there must exist e

(el, e2) and to>0 such that 3/(to) 0E. From Corollary 3.3.2 and the fact that Np is
attracting it follows that 3/(e)(to)C:(^4(Cn)t_Jp(Ep)). Therefore, 3/(to)
0(Ex)\0(M(Cnn)). From the definitions, this last set is contained in W4(e), so the
proof is complete. [

Remarks. (1) It follows easily from our constructions that when the winding
number changes it does so by exactly one.

(2) Note that for each 3/o NU No to(3/o) as e0. This is because for e

small, 3/ (t) will at some time lie arbitrarily close to one of the periodic solutions py (t).
Each of these periodic solutions crosses E infinitely often. Therefore, the number of
times 3/(t) crosses E will become unbounded as e- 0.

(3) Fix 3/o NU No. The previous two remarks imply that there exists a positive
integer No such that for each integer N> No there exists en such that 3/o W(eN)
and to, (3/o) N.

6.4. The Smale horseshoe. In the Introduction, we stated that it is possible for a
Smale horseshoe to exist for the flow defined by (2.1). Whether or not a Smale horseshoe
exists depends in a crucial way on the structure ofthe slow dynamics. We now elaborate
on these statements. We first prove a proposition which gives a sufficient condition
for the flow to give rise to a Smale horseshoe. As we show in 7, this sufficient condition
can be easily tested numerically for a specific set of equations. In 6.5, we prove,
analytically, that there do exist functions fl(v, w, y),f(v, w, y), and g(v, w, y, k) which
satisfy (A1)-(A9) so that this sucient condition is satisfied. In 6.6, we discuss when
(2.1) does not give rise to a Smale horseshoe. In this case, e process of adding one
spike will be continuous.
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1434 D. TERMAN

The Smale horseshoe will arise from a certain return map defined by the flow.
We now define certain subsets of phase space which will allow us to define and describe
the important properties of this map.

Consider the trajectories M(t) and M-(t) which were defined in (A3). Recall
that for each y (A, h), lim,_ M-(t) ly and limt_M(t) ly. Therefore, M(t)
and M;(t) must lie in NL for sufficiently large. That is, if A < y < h, then there exists
ty and t- such that M-(t) NL if and only if t_-> t;, and M(t) NL if and only if

>-- ty. If y h, then it is still true. that limt_ M(t) ly. Choose th SO that M-(t) NL
if and only if >-_ th.

We now assume that the trajectories My (t) and M-(t) coalesce as y- A to form
one trajectory M(t). This assumption may not follow from our previous assumptions,
however all of the solutions we are actually interested in are bounded away from the
set where y- A. For this reason, we may redefine the flow in a smooth fashion in the
set where y A + 6, for 6 small, without changing the solutions of interest. Choose t
so that M(t) NL if and only if >_- t. Note that t -limy,;t ty --limy.; t.

Now let S equal to the union of the points:
+(a) My(ty) for A<y<h;

(b) M-(t-) for A < y < h;
(c) M(t);
(d) M;(th).

Note that S ON. For convenience, we assume that S (Cr)-- Nr, where we are
using notation defined in 3.1. Since S is homeomorphic to a circle, there exists a

y-homeomorphism @s from the unit circle S into Nr such that @s(S1) S. Let

(6.4.1)
{(x, s)" 1/2<x+ s2 <2},

{(x, s)" x + s < 1/2},

{(x, s): x + s2 < 2},

{(x, s) : s < r}.

Clearly, we can extend s to a y-homeomorphism (I)H :-’ NT. Let D--:I)H(),
D1 =s(l), H =n(), and for Irl

These sets are illustrated in Fig. 7. Note that H is an open neighborhood of S in
N.

LEMMA 6.4.1. Ife is sufficiently small, then theflow given by (2.1) defines a continuous

map ap D- H.
Proof Fix 3"0 D and let 3’(t) be the solution of (2.1) with 3’(0)= 3"0. We need to

prove that there exists to > 0 such that 3’(t) D for 0 < < to, and 3’(t0) H.
From the discussion in 3, we know that there exists to> 0 such that 3"(t): ONL

for 0 < < to and 3’(to)60NL. It only remains to prove that if e is sufficiently small,
then 3"(to) H. However, when 3"(t) leaves NM, the neighborhood ofthe middle branch,
it must do so close to one of the trajectories My or M;(t) for , _-< y_-< h. We can see
that this is true by choosing the constants qo and 61 in the proof of Proposition 3.3.1
to be very small. Now each of the trajectories My, )t <y<h, and M;, <y_-< h,
enter NL through H. Since H is open, it follows that if e is sufficiently small, then
3"(t) must also enter NL through H, and the result follows. The map is illustrated
in Fig. 8.

We now give sufficient conditions for to give rise to a Smale horseshoe. See
Fig. 10. In what follows we always assume that e is sufficiently small.

PROPOSITION 6.4.2. Suppose that there exists 3"1 D1 and 3"_ D1 such that Ito(3"1)-
toe(3,2)1 > 2. Then gives rise to a Smale horseshoe.

Proof The proof of this result is broken up into a number of steps. In what
follows, we say that C is a curve in D if there exists a continuous function c [0, 1 - D
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1435

W

/

MB

FIG. 7. Various subsets of NL. S is where the unstable manifold of the middle branch, A < y < h, enters

NI. H is a neighborhood of S on ONL. Every bursting solution must enter Nt through H.

such that C is the image of . We say that C crosses D if there exists a continuous
function c [0, 1]cl D suchthat C is the image of , (s) D fors (0, 1),
and (1) 0D.

Let C =Im (s), 0-<s_-< 1, be any curve in D such that (0)= 3q and (1)=
Because to(y) to(y2), there must exist s(0, 1) such that (s) WM(e). This
follows from an argument similar to the proof of Proposition 6.3.1. Moreover,
can change by at most one at a time as s is varied. This, together with the assumption
that 1o()-o(,.)1>2, implies that there exists sl and s2 such that for i= 1, 2,
(si) W4(e), and to(CC(s)) to((s))+2.

We have now shown that W4(e) intersects D in at least two distinct points.
However, W4(e) is a two-dimensional manifold which intersects D transversely.
Therefore, W4(e) must intersect D in at least two curves which cross D. We denote
these curves by C1 and C2. They have the property that (si) Ci, 1, 2, and the
winding number is constant along each curve.

Let M be the subset of D bounded by C1, C2, and 0D. See Fig. 9. We claim that
the map M - H satisfies the conditions necessary for a Smale horseshoe. To prove
this, we let t Image q(s), 0<=s<= 1, be any curve in D which satisfies (0) C
(1) C:, and CO(s) M for 0-<_ s-<_ 1. Then (0) is a curve which lies in H. Now
H is topologically an annulus. Because Ito((0))- to((1))[ 2, it follows that(
is a curve which wraps around (in the obvious sense) H twice. See Fig. 9. Since 0
was an arbitrary curve in M which connects C with C_, it follows that (M)
intersects M in such a way that it gives rise to a Smale horseshoe, and the proof is
complete. U
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1436 D. TERMAN

FIG. 8. The return map used in the construction of a Smale horseshoe. Every trajectory which starts in D
must, at some later time, cross H. This defines a continuous map D- H.

Remark 1. With additional assumptions one can prove that the horseshoe just
described is hyperbolic. Sufficient additional assumptions which guarantee this are the
following. Each of these assumptions is concerned with solutions of the fast subsystem
(FS).

(H1) The eigenvalues ofthe fixed points ly on the lower branch form two continuous
functions hi(y) and h2(Y) for < y < p. These functions can be chosen so
that A2(y)<,l(y)<0 for each y. Moreover, each of the trajectories M;(t)
and M-(t), A (y (h, approach ly tangent to an eigenvector corresponding
to AI(y).

(H2) Near Kp the fixed points of (FS) can be parametrized as a curve (v(s), w(s),
y(s)) such that (v(0), w(0), y(0)) Kp. Our previous assumptions imply that
y’(0)-0. We now require that y"(0) 0.

(H3) The homoclinic orbit M-(t) arises from a transverse intersection of the center
stable and center unstable manifolds of the middle branch. Note that each
of these manifolds is two-dimensional. The center unstable manifold of the
middle branch is the union of trajectories M-(t) and M-;(t) for h < y < p.
The center stable manifold ofthe middle branch is the manifold WM described
in 6.2.

With these assumptions we are able to define local coordinates near each "piece"
of phase space. That is, (H1) allows us to define local coordinates near the lower
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1437

FIG. 9. Various sets used in the proof of Proposition 6.4.2. The winding number to is constant along each
curve C and C2 with w(C)= toe(C2)+ 2. If is any curve which connects C with C2, then () must

wind around H twice.

branch, (H2) allows us to define local coordinates near the right knee Kp, (A8) allows
us to define local coordinates near , and (A2) allows us to define local coordinates
near the middle branch. (H3) allows us to carefully keep track of trajectories which
pass close to the homoclinic orbit M(t). With these local coordinates we can compute
D, the linearization of the return map . It is properties of this linearized map
which allows us to conclude that the Smale horseshoe is hyperbolic. See Guckenheimer
and Holmes [10, p. 241].

The analysis just described is very technical and will be presented, in detail, in a
later paper.

Remark 2. Suppose that does give rise to a hyperbolic horseshoe, and assume
that A is the maximal invariant set of. It is well known that on A, is topologically
equivalent to the shift map on the set of biinfinite sequences of two symbols. We now
discuss what this implies about the nature of bursting solutions of (2.1).

The set A is contained in a set of the form M fq (M) where M is as in the
proof of the proposition. Now M f3 ,(M) M1 M2 c H, where M1 f’) M2 . See
Fig. 10. Since H lies close to where the trajectories M-(t) and M(t), A < y < h, enter
N/, we may choose M1 and M2 so that M1 lies close to where the trajectories M-(t)

+enter Nt, and M2 lies close to where the trajectories My(t) enter N/. This implies
that if 3’1 and 3’2 are two points in A, such that (3’1) M1 and (3’)6 M, then
w(3’2) t0,(3"1) + 1. Another way to say this is that if 3"1(t) and 3"2(t) are the solutions
of (2.1) with 3’1(0)= 3’1 and 3"2(0)--3’2, and tl, t2 are chosen so that 3"1(tl) =(3’),
3’2(t2) e(3"2), then 3"1(t) has one less spike during its burst, 0< < tl, than 3"(t) has
during its burst, 0 < < t2.

Let n be the positive integer such that if (3’1) M1, then w(3"1) n, and let F
be the set of all biinfinite sequences { a}, where a { n, n + 1 }. Let r A -> F be the map
defined by o-(3’o) { a}, where ai tl if (I) (3’o) E M1 and ai n + 1 if (I)ie (3’o) E M2 This
map is a bijection. Therefore, if {ai} is any element of F, there exists a point 3’o A
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1438 D. TERMAN

+MyoH

S H

, Yo h
FIG. 10. In this case, d gives rise to a Smale horseshoe.

such that cr(3’o)= {ai}. Let 3"(t) be the solution of (2.1) with 3,(0)= 3,0 and choose {ti}
so that 3,(t) @ (3,o). Our previous discussion implies that o (3,(t)) a, or the number
of spikes in the ith burst, t-i < < ti, is a.

Remark 3. We may expect that the proposition remains valid if ]to (3,1) o (3,2)[
2. This will indeed be the case if (H1)-(H3) are satisfied. It is also possible that a
Smale horseshoe exists even though ]o(yl)-o(3’2)]-<_ 1 for all 3’1, 3’2 D. An example
of this is demonstrated numerically in 7.

Remark 4. Suppose that there exist 3,1, 3,2 D such that ]o(3,1)-o(3’2)[ k> 2.
Then M can be chosen so that (M) wraps around H, k times. Hence, @ gives rise
to a Smale horseshoe which wraps around at least k-1 times. An example of this,
with k--4, is presented in 7.

6.5. Nonlinearities which give rise to a Smale horseshoe. We now demonstrate that
it is possible to choose the nonlinearities in (2.1) so that the corresponding map
gives rise to a Smale horseshoe. In fact, we will prove the following stronger result.
For this result we assume that g(v, w, y) g(v, w, y, k) for some fixed k (ko, kh).

PROPOSITION 6.5.1. Assume that the functions fl(v, w, y) and f2(v, w, y) satisfy
(A1)-(AS) and fix K. Then there exists a function g(v, w, y) which satisfies (A6) and
(A7), so that if e is sufficiently small, then ]to (3,1) to (3,2)1 K for some 3,1,

Proof. Recall the sets NL, No, and To which were defined in 3. We assume that
g(v, w, y)= 1 in NL U No. Each trajectory which passes through a point in D1 must
enter N, then enter No, and then leave No through To. Fix 3’1 D1, y_ D1, and let
%(t)=(v(t), w( t), y,( t)) be the solution of (2.1) which satisfies %(0)= 3’i, i=1, 2.
Choose tl and t2 so that for i= 1, 2, %(t) To and 3’i(t) To for 0< < ti. Suppose
that Yi Zry(3,i(ti)). We assume that Yl # Y2. For this to be true it may be necessary to
change 3,1 and 3,2 or adjust To. Without loss of generality we assume that Yl < Y_.

We now follow 3,1(t) and 3,2(t) forward in time. Each of these trajectories will
enter Np, the neighborhood of the periodic solutions. Suppose that, for 1, 2, 3,(t)
enters Np at t. By choosing g(v, w, y) appropriately we may assume that for
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1439

some 8 > 0,

max {yl(t)" tl <t< ?1}=-yo<Yo+26=y2(2).

In what follows we assume that

g(v, w, y) -r in Np (q {(v, w, y)" y > yo+ 6},

where r is a small positive constant, to be determined. Outside of this region we assume
that g(v, w, y) is chosen so that (A6) and (A7) are satisfied. In particular, we assume
that g is fixed in the region {(v, w,y)" Y<=Yo}. Hence, to(y) is now well defined. We
show that it is possible to choose r so that to (y2) > to (yl)+ K.

Let to t + 6/er. Then Y2(to) Yo + 6 and y2(t) > Yo + 6 for ’2 < < to. Because
to as r 0, we may choose r so small that for t < < to, y2(t) winds around in
Np as many times as we please. Therefore, by choosing r small we may assume that
to(y2) is as large as we please. In particular, we may choose - so small that to(3,2)>
o(y) + K.

6.6. Smooth transition from n to n + 1 spikes. We now discuss one way in which
it is possible that (2.1) does not give rise to a Smale horseshoe. In this case the transition
from n to n+ 1 spikes is continuous. As e is adjusted, there always exists a stable
periodic solution of (2.1) which varies continuously with e. As e is varied the period
of the bursting solution increases. This is because the periodic solution travels up the
middle branch an increasing amount of time. The new spike is added at the value of
e for which the periodic solution travels all the way up the middle branch until it
reaches close to the left knee. We wish to give conditions on the nonlinearities in (2.1),
which guarantee that this happens. In what follows we assume that the fast dynamics
f and f2 is fixed. We show that a smooth transition takes place if g is chosen so that
the slow dynamics in the passive phase is much slower than the slow dynamics in the
active phase.

For It] < 1/2, let Hr be the set defined in (6.4.1). Suppose that for each r, H (Hr) c Hr.
This implies thatH has a fixed point in each Hr. This fixed point, of course, corresponds
to a periodic, or bursting, solution of (2.1). For r close to -, this bursting solution
must travel up the middle branch close to the left knee. It therefore corresponds to a
bursting solution with a long period. We now find conditions on the slow dynamics
which guarantee that H(Hr)c Hr for [r <1/2. In this case, we do not expect that H
gives rise to a Smale horseshoe.

The essential idea of this analysis is the following. For h Hr, let y(h)(t) be the
solution of (2.1) with y(h)(O) h. As y(Hr) passes near the lower branch, it contracts
in size at an exponential rate. Later, when it passes near the middle branch, it stretches
at an exponential rate. In order for Hr to be mapped into itself, we must have that
the contraction near the lower branch be greater than the stretching near the middle
branch. This can be accomplished by choosing the rate of the slow dynamics near the
lower branch to be much less than the rate of the slow dynamics near the middle branch.

In order to simplify the discussion we assume that (2.1) is linear near the lower
and middle branches. That is, in NL, we assume that (2.1) is given by

(6.6.1) Wt----A2(W--Wi),

yt E1,
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1440 D. a’ERMAN

while in NM, (2.1) is given by

(6.6.2) w’= 3’2(W- Win)

y’ -82

We also take NL and NM to be rectangular boxes. That is, there exists (vt, Wl),
(Vm, Win) and/3 > 0 such that

NL {(v, w,y): IV-Vll<-_,[w-wt[<-_,A-8<-y<-_yp},

Nt {(v, w,y): Iv-vl<-_,lw-wml<-_,y<-_y<-h+,}.

Choose ro (A, h) such that Hr c { (v, w, y): A 8 _-< y =< ro}.
We now follow Hr in forward time until it crosses Lp. Fix 3’0 (Vo, Wo, Yo) Hr,

and let 3’(t) 3’(ho)(t). Choose to so that 3’(to) Lo. From (6.6.1), and the definition
of Lo, we have that y(to)=yo+elto=yo, or to=(yo-yo)/el. We then conclude from
(6.6.1) that

[t)(t0)- t)ll I/)(0) -/)ll e-air----< exp
E1

IW( to) Wll Iw(O) Wl[ e-xzt<- fl exp -A
E1

Now if 3"0 Hr, then A 8 _-< Yo--< ro. Assume, without loss of generality, that
It therefore follows that

=< II(V(to), W(to))-(Vl, Wl)l[
E1

(6.6.3)

-<2 exp -A1

This gives us an estimate of how much 3"(Hr) is contracted by the flow as it passes
near the lower branch.

We now wish to estimate how much 3’(Hr) is stretched as it passes near the middle
branch. Recall that we are trying to find conditions on the parameters so that
Hr. What we will do is follow Hr backward in time and estimate how much it is
contracted by the backward flow as it passes through N. Fix
and let 3"(t) be the solution of (2.1) with 3"(0)= 3’0. We assume, as before, that
h 8 < Yo < ro for 3’0 Hr. Choose t_ < tl < 0 so that 3’(t) Nt U N for (q, 0),
3"(tl)ON, 3’(t)N for t(t,tl), and 3"(t2)ONa. Let 3"(tl)=(Vl,Wl,Yl)and
3’(t2) (v2, w2, Y2). For t (q, 0), 3"(t) is determined by the fast dynamics. We may
assume that e is sufficiently small so that h- 8 <y < ro.

Now 3"(t) enters, in forward time N4 at t- t2. It follows from Corollary 3.4.2
that h < Y2 < h + 8. Therefore, if 82 8 + 81, then

(6.6.4) h ro < Yz--Y < h h + 82

We assume, without loss of generality, that 3"(t) enters N4 at t2 through the
side v v,, +/3 and leaves N4 at tl through the side w w,, +/3.
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CHAOTIC SPIKES IN EXCITABLE MEMBRANES 1441

It follows from (6.6.2) that for (tl, t2), y(t) is given by

(a) v(t) :/3 e-r,(t-t2) + v,,,,
(6.6.5) (b) w(t)=(w2-w,,)

(c) y( t) Y2- e2( t2).

Therefore, (6.6.4) and (6.6.5)(c) imply that

(6.6.6)
h ro<t_t2_Y2 Y<
G2 G2 G2

From (6.6.5)(b) we conclude that

Iw2-wml exp [ya(h-r)] <lw(tl)-w’l<lw2-w’l exp [y2(h-A+62)]"cae2

Since [w(q)-w,,I =/3, we conclude that

E2 82

This gives bounds on the size of y(H) as it passes through Nv in backward time.
On the other hand, (6.6.3) gives an estimate of how much y(H) is contracted in
forward time as it passes though N. We assume that the change in size of y(/-L) as
it travels from N to Nv is O(1) with respect to the parameters. Therefore, if we
require that (/-L)

(6.6.8) exp [-A,(’Y"r)] < C exp (-y2(h- + 62)).E E2

Recall that a smooth transition will take place if (/-L)c H for each r e (-1/2, 1/2).
Therefore, we expect that a smooth transition takes place if e<< e2. In this case we
do not expect a Smale horseshoe to exist. On the other hand, we demonstrated in the
previous section that a Smale horseshoe will exist if the slow dynamics in the active
phase, that is e2, is much smaller than the slow dynamics in the passive phase, that
is el.

Remark. Suppose that ko < k < kh and (k-ko) is small. Then the fixed point of
(2.1) will lie close to the lower branch. If (kh- k) is small, then the fixed point will
lie close to the middle branch and branch of periodic solution . This implies that if
(k- ko) is small then the slow dynamics in the passive phase (lower branch) is smaller
than the slow dynamics in the active phase. On the other hand, if (kh- k) is small,
then the slow dynamics in the active phase will be smaller than the slow dynamics in
the passive phase. These considerations lead us to predict that if (k- ko) is small, then
the transition from n to n + 1 spikes will be continuous. If (kh- k) is small then this
transition will be chaotic in the sense that Smale horseshoes will arise. In the next
section, we demonstrate numerically that this is precisely what happens.

7. Numerical results. We now describe the results of numerical computations we
performed in order to test the results of the previous sections. The system we considered
was

v’= y -.5(v + .5) 2w( v + .7) m(v)(v 1),

(7.1) w’= 1.15(w(v)- w)r(v),

y’=e(k-v),
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1442 D. TERMAN

where

woo(v)= l+tanh
.145

moo(v) = l+tanh
.15

r(v)=cosh(v-’l).29
This system was introduced by Morris and Lecar [11 as a model for electrical activity
in the barnacle muscle fiber. We can verify, numerically, that this system satisfies the
basic assumptions (A1)-(A9) and (H1)-(H3). See Rinzel and Ermentrout [14]. In Fig.
11 we show that the set of rest prints for the fast subsystem together with the maximum
and minimum values of the v-coordinate along each periodic solution. Stable rest
points and periodic solutions are drawn with solid curves while unstable solutions are
drawn with dashed curves. This bifurcation diagram was drawn using AUTO [7]. Note
that for these equations,

(7.2) kh =--.186 and kp =-.245.

From the remark in the preceding section, we expect that the transition from n to n + 1
will be continuous if k-k, is small, and will be chaotic if kh- k is small.

In Fig. 12, we show that v components of three solutions of (7.1) with k =-.22.
These computations demonstrate that (7.1) gives rise to chaotic dynamics in the
transition from two to three spikes. Figure 12(a) illustrates the v component of the
solution of (7.1) with e .007 and initial data

(v(0), w(0), y(0))= (-.2, .015, .059).

0.20 Periodic
..-.-b
’/ solutions
/

0.00 ............
c \ Rest points

V

-0.20

-0.40
-0.05 0.00 0.05 0.10

Y
FIG. 11. The bifurcation diagram for the steady state and periodic solutions of (7.1) with e O. The solid

curves correspond to stable solutions and the dashed curves correspond to unstable solutions.
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-0.20

-0.40

Time,

0.40

0.20

V

0.00

-0.20

100 150 200

Time

FIG. 12. Solutions of (7.1) with k =-.22 and (a) e =.007, (b) e =.006, and (c) e =.006368. (d) shows
the preimage and image of a return map when e .006368. This map gives rise to a Smale horseshoe.
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FIG. 12continued
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0.40

0.20

V 0.00

-0.20
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i.

250 300 350

Time
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-0.20
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0 50 100 150 200

Time

250 300 350

FIG. 13. Solutions of (7.1) with k =-.24 and (a) e =.005, (b) e =.004123, (c) e =.004122, and (d)
.004. In this case the transition from two to three spikes is continuous.
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FIG. 13mcontinued

In this case, there are two spikes per burst. In Fig. 12(b), we solved (7.1) with e .006
and the same initial data. Now there are three spikes per burst. In Fig. 12(c), we solved
(7.1) with e .006368 and the same initial data. Note that there are three spikes in the
first burst and two in the second. Moreover, there is a wide plateau region in each
burst. In order to verify that (7.1) gives rise to a Smale horseshoe for some values of
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0.01
0.050 0.055 0.060 0.065 0.070 0.075

Y

FIG. 14. The image of one line segment of the return map p corresponding to solutions of (7.1) with the
last equation replaced with (7.3). Here e =.0585 and 6--.1. This map gives rise to a Smale horseshoe which
winds around four times.

e between .006 and .007, we numerically computed a Poincar6 map similar to that
considered in 6. The Poincar6 map is defined as follows. Let

E {(v, w, y): v -.2}

and

M {(v, w, y): v -.2, 0 < w < .007, .059 < y < .061 }.

For rn e M, let y(t) be the solution of (7.1) with 3,(0)= m. We then let (rn)= y(to),
where to is chosen so that y(to)eE, and y(t)C:E for 0< < to. In Fig. 12(d) we show,
in the plane v =-.2, the rectangle M and the image of M under , for e .006368.
Note that (M) must lie close to the unstable manifold of the middle branch. The
dashed curves in Fig. 12(d) are not numerically computed points. Rather, they are
simply extensions of the solid curves which were numerically computed. The range of
parameter values for which points in E are mapped by close to the left knee is
extremely narrow.

In Fig. 13, we show that v components of four solutions of (7.1) with k =-.24.
Our computations demonstrate that the transition from two to three spikes is continuous.
In each of these four solutions we solved (2.1) with initial data

(v(0), w(0), y(0)) (-.2, .004, .07).

This point lies very close to the lower branch. The values of e in Figs. 13(a), 13(b),
13(c), and 13(d) are .005, .004123, .004122, and .004, respectively. The numerical
computations indicate that each of the solutions quickly approaches a stable periodic
solution. We see in Figs. 13(b) and 13(c) that during the transition from two to three
spikes the solution spends an increased amount of time in the excited state. This is
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FIe;. 15. Solutions of (7.1) where the last equation is replaced with (7.3). The number of spikes per burst
varies from four, five, and six. This reflects the existence of the Smale horseshoe.
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because the corresponding trajectory in a phase space spends an increased amount of
time near the middle branch.

Our final example illustrates the results described in 6.5. In that section we
demonstrated that if the slow dynamics in the active phase is much smaller than the
slow dynamics in the passive phase, then (2.1) may give rise to Smale horseshoes with
a large winding number. We consider the system (7.1) with the last equation replaced
by

2
tanh

.005

where 6 =.1.
The parameter 6 measures the ratio of the rate of the slow dynamics in the

active phase divided by the rate of the slow dynamics in the passive phase. On the
lower branch, v<-.23, so tanh ((v + .23)/.005) -1. Hence, on the lower branch,
y’-e(.22+v). On the other hand, in the active phase, v>.23. Hence,
tanh ((v +.23)/.005) +1, so y’ -6e(.22+v). If we take 6-.1 then we should expect
the system to give rise to chaotic dynamics.

In Fig. 14, we set e =.0585 and consider the map described earlier in this
section. Figure 14 shows the image of the line segment

(7.4) l= {(v, w, y): v -.2, w .03, .03 < y < .075}.

Note that (l) winds around four times. Further computations demonstrate that
gives rise to a Smale horseshoe which winds around four times.

In Fig. 15(a) we show the v component of the solution of the equations with
e .0585 and initial conditions

(7.5) (v(0), w(0), y(0)) (-.2, .015, .05900043).

Note that the number of spikes per burst varies between four, five, and six. Moreover,
some bursts have a plateau region, while others do not.

The solution is extremely sensitive to changes in the parameters. For example, if
instead of (7.5) we took initial conditions

(v(0), w(0), y(0))= (-.2, .015, .059000429),

then the v component of the solution is as shown in Fig. 15(b). The only significant
difference between Figs. 15(a) and 15(b) is the last spike.
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