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Abstract. A class of differential equations that model electrical activity in pancreatic beta cells is
considered. It is demonstrated that these equations must give rise to both bursting solutions and, for different
values of the parameters, continuous spiking. We also consider how the number of spikes per burst changes
as parameters in the equations are varied. This transition may be continuous, in which case the period of
the bursting solution increases significantly and then decreases. Hence, small perturbations may cause
macroscopic changes in the bursting solution. This transition may also give rise to chaotic dynamics due to
the existence of a Smale horseshoe.
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1. Introduction. In this paper, we study the qualitative behavior of solutions to
mathematical models for electrical activity in pancreatic B-cells. These cells are respon-
sible for the secretion of insulin. Atwater et al. [2] found that at certain levels of
glucose concentration, the membrane potential of the beta cell underwent sustained
oscillations of the burst type. Moreover, at higher glucose concentrations, the bursting
gave way to continuous spiking or beating. The first theoretical model for this
phenomena was given by Chay and Keizer [4]. This model consists of five first-order
nonlinear differential equations of the Hodgkin-Huxley type. Later, Chay [3] simplified
this model to a first-order system of three equations. Both the original and reduced
Chay and Keizer models display many of the qualitative features observed in experi-
ments. In particular, these models contain a parameter kc,, which increases with
glucose concentration. Numerical studies of Chay and Keizer [4], Chay [3], and Chay
and Rinzel [5] have demonstrated that both of these models exhibit bursting solutions,
and, at higher values of kc,, these bursting solutions give rise to continuous spiking.
The numerical and experimental results indicate that the transition from bursting to
continuous spiking is a chaotic one.

In [12], Rinzel describes several mathematical mechanisms for burst generation.
We consider one such mechanism; this includes the reduced Chay and Keizer model.
See Rinzel [13]. We demonstrate, both analytically and numerically, that this type of
model may give rise to chaotic solutions as parameters in the equations are varied.
The chaotic solutions arise, mathematically, due to the existence of a Smale horseshoe.

The equations we consider are autonomous systems of ordinary differential
equations. Following Rinzel [12], we say that a solution to the equations is bursting
if it is a periodic solution whose behavior alternates between near steady state behavior
(the passive phase) the trains of spike-like oscillations (the active phase). An example
of a bursting solution is shown in Fig. 12. The system of equations consists of fast and
slow subsystems. If we think of the variables of the slow subsystem as parameters,
then the fast dynamics will have a branch of stable rest points and a branch of stable
periodic solutions. The bursting solution will then be a closed orbit in phase space,
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which, in the passive phase, passes close to the branch of stable rest points. The trains
of rapid spikes correspond to the closed-orbit passing close to the branch of periodic
solutions.

We say that the system gives rise to continuous spiking if there exists a stable
closed orbit that always lies close to the branch of periodic solutions.

We prove that these models must give rise to both bursting solutions and, for
other values of the parameter k,, must give rise to continuous spiking.

We also study how the number of spikes per burst changes as parameters in the
slow subsystem change. We see that this can take place in two distinct ways depending
on the structure of the slow dynamics. One possibility is that there is a smooth transition;
for all values of the parameters, there exists a stable periodic solution whose trajectory
in phase space changes in a continuous fashion as the parameters are varied. What is
interesting about this type of transition is that as the number of spikes change, the
period of each burst increases in size. Hence, small perturbations of the slow dynamics
cause macroscopic changes in the bursting solution. See Fig. 13.

The transition from n to n + 1 spikes need not be continuous; during this transition,
the flow may give rise to a Smale horseshoe. We show in § 6 (see Remark 2 following
Proposition 6.4.2) that the existence of the horseshoe implies that if {a, } is any biinfinite
sequence of integers with a, € {n, n+1}, —00< k <0, then there must exist a burstlike
solution of the equations such that the number of spikes in the kth burst pattern is a,.

Our approach to this problem is quite geometrical. We prove the existence of a
bursting solution by demonstrating that a certain Poincaré return map has a fixed
point. The existence of chaotic solutions follow by showing that the Poincaré map
gives rise to a Smale horseshoe. In order to define the Poincaré map and demonstrate
that it has the correct properties, it is necessary to define various geometrical objects
in phase space. It is important to understand how trajectories in phase space are
mapped from one of these geometrical objects into another, and through which sides
of the geometrical objects a trajectory may leave or enter.

This type of geometrical argument has been used by others to study singular
perturbation problems arising from models for excitable membranes. See, for example,
Cronin [6]. Aperiodic and chaotic solutions have also been studied for models in
which the slow subsystem acts independently as a forcing function to the fast subsystem.
For such models, Ermentrout and Kopell [8] and Alexander, Doedel, and Othmer [1]
discuss the transition from n to n+1 spikes.

An outline of the paper is as follows. In § 2, we state precisely what assumptions
we require for a bursting solution. In § 3, we define the basic geometrical objects in
phase space. The existence of a bursting solution is proved in § 4. In § 5, we prove
that for certain values of the parameters, the system must give rise to continuous
spiking. In § 6, we study the transition from n to n+1 spikes. To do this we must
introduce a notion of winding number. This corresponds to the number of spikes per
burst for bursting solution. In § 7, we support our analytic results with numerical
computations.

2. Assumptions. We consider a system of ordinary differential equations of the
form

UI:fl(va W, y)’
(2.1) w'=fy(v,w,y),

y' =¢eg(v,w,y, k).



Downloaded 12/31/12 to 128.148.252.35. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1420 D. TERMAN

Here, ¢ is a small positive parameter, and f;, f,, and g are smooth functions. We
consider y to be the slow variable. If we let f(v, w,y)=(fi,/>)", then by the fast
subsystem we mean the equations

!
(FS) (2) =swmn.
w
Here, y is thought of as a parameter.

In the hope of keeping the notation somewhat manageable, we introduce the
following conventions. Our first assumption will be that the set of rest points of (FS)
is an S-shaped curve & in the three-dimensional (v, w, y) phase space. We denote the
upper branch of ¥ by UB, the middle branch by MB, and the lower branch by LB.
the letters I, L, and &£ will be reserved for any object associated, in some way, with
LB. Similar statements hold for MB and UB. The left and right knees of & also play
a central role in our analysis. The letters A and p will be reserved for any object
associated with the left and right knees, respectively.

We have chosen the assumptions so that, for a specific system, they can be easily
verified, numerically, using a standard ordinary differential equation solver. The first
five assumptions are concerned with the two-dimensional system (FS), while the last
two assumptions are concerned with the zero set of g(v, w, y, k). The assumptions
listed below are those required to prove the existence of a bursting solution. Further
assumptions will be given later when we consider the existence of continuous spiking
and horseshoes.

In what follows, the reader is referred to Fig. 1.

(A1) The rest points (FS) consist of a smooth, S-shaped, curve & in phase space.

That is, there exists A <p such that

(a) If y <A, then (FS) has precisely one rest point, which we denote by I, ;

(b) If y> p, then (FS) has precisely one rest point, which we denote by u,;

(c) If A<y<p, then (FS) has precisely three rest points. These are denoted
by l,, m,, and u,;

(d) The rest point at the “left knee,” for y = A, is denoted by K,, and the
rest point at the “right knee,” for y = p, is denoted by K, ;

(e) The union of all the above rest points form a smooth curve, which we
denote by &.

(A2) Each of the rest points [, is an attractor, as a solution of (FS). Each of the
rest points m, is a nondegenerate saddle. We denote the two trajectories in
the unstable manifold of m, by M (t) and M (t).

(A3) There exists he (A, p) such that Mj(t) is homoclinic to m,; that is,
lim, .0 M (8)=my. If y€ (A, p), then lim,, M;(t)=1,. If ye (A, h), then
lim, o M (1)=1,.

(A4) There exists §,> 0 such that if h <y <p+§,, then there exists an asymptoti-
cally stable periodic solution p,(t) of (FS). This periodic solution surrounds
u,, but not [, or m,. The union of these trajectories define a continuous branch
of solutions, which terminate at M (t) as y > h. Let ? be the union of all
these periodic solutions.

Remark. In Fig. 2, we illustrate the phase planes corresponding to (FS) for three
different values of the parameter y in order to demonstrate how the trajectory M (¢)
changes as y passes through the critical value y=h. In each of these figures,
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Fi1G. 1. LB, MB, and UB are the branches of rest points of (FS). For y> h there is a periodic solution
p, which surrounds UB. These periodic solutions terminate at the homoclinic orbit M. For A<y <p, the
trajectories in the unstable manifold of the middle branch are denoted by M, and M7 .

v vi

a) A<y<h b) y=h c) h<y<p

F1G. 2. The phase plane of (FS) for three different values of y. If A <y < h, then each trajectory in the
unstable manifold of m, approaches |, as t > . If y = h, then one of these trajectories is a homoclinic orbit. If
h <y <p, then this trajectory approaches the periodic solution p, as t- 0.

lim,.. M (t)=1,.In Fig. 2(a), we assume that A <y < h. In this case lim, .., M (1) = 1,.
In Fig. 2(b), y = h, and M () is the homoclinic orbit. Finally, in Fig. 2(c), h<y <p.
In this case, M (t) approaches the periodic orbit p,(t), as t > cc.

We now need an assumption which will allow us to conclude that for 0<e« 1,
solutions of (2.1) which pass close to the right knee must then pass close to the branch
of periodic solutions, while solutions of (2.1) which pase close to the left knee must
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then pass close to the lower branch. In what follows, w(y,) will be the omega limit
set of the solution of (2.1) with £ =0 which passes through v,.

(AS) There exists a neighborhood %, of K, such that if y,= (v, yo, wo) € U, then
either w(y,)=m,,, w(y,)=1,, or w(vy,)=p,,. There exists a neighborhood

U, of K, such that if y,€ K,, then either w(y,) = m,, w(v,) =1,, or w(y,) =

u,,.

The final assumptions are concerned with the slow dynamics.

(A6) There exists k, < k, such thatif k, < k <k, , then there exists a smooth function
v=h(w, y, k) such that g(v, w, y, k) =0 if and only if v = h(w, y, k). Moreover,
g(v, w, y, k)<0if and only if v> h(w, y, k). If M, ={(v, w, y): v=h(w, y, k)},
then M, N ¥ =m,, for some y, € (A, p).

Remark. This assumption implies that for k € (k,, k,) and &€ > 0, there is precisely
one fixed point of (2.1). This is the point m,_ on the middle branch.
Let My ={(v, w,y): v>h(w, y, k)} and M, ={(v, w, p): v<h(w, y, k)}.

(A7) If k,<k<k,, then LB< M, . Moreover, there exists a unique k;, € (k,, k,)
such that y,, = h. If k, =k =k, then P < M.

Remark. This last assumption implies that if ke (k,, k,), ¢ >0, and (v, y, w) lies
near the lower branch, then y' = eg(v, y, w, k) > 0. Moreover, if, k, <k <k,, €¢>0 and
(v, y, w) lies near 2, then y'<0. Note that if k= k;, and ¢ >0, then the fixed point of
(2.1) is my,. This is the homoclinic point for (2.1) with £ =0.

Remarks. (1) These assumptions can be verified, at least numerically, for the
B-cell models mentioned in the Introduction, if we make a suitable interpretation of
the variables. Here, v corresponds to the potential difference between the inside and
outside of the cell, w corresponds to the potasssium channel state variable, and y is
related to the calcium concentration. In the original B-cell model variables, (2.1) gives
rise to a ‘“‘z-shaped” curve instead of our “S-shaped” curve. The parameter k corre-
sponds to ks, mentioned in the Introduction.

(2) Note that we do not assume anything about the rest points u,. This is because
the periodic and chaotic solutions which we consider in the later sections do not ever
approach the upper branch. It is possible, for example, that there exists y > h such
that the rest points u, are stable for y>j and undergo a Hopf bifurcation as the
parameter y decreases past y. This is what happens for the system (7.1.1).

(3) The essential reason why a burst-like solution exists is the following (see Fig.
3(a)). Suppose that y(t) is a solution of (2.1) with 0<e« 1, ke (k,, k;,), and assume
that y(0) lies close to the lower branch. Because y'>0 near the lower branch, y(t)
will travel slowly to the right, up the lower branch. This corresponds to the passive
phase of the burst. y(t) will travel up the lower branch until it is pushed past the right
knee. At this point, the fast dynamics take over the y(¢) quickly travels close to 2,
the branch of periodic solutions. Because y’ <0 near the periodic solutions, y(¢) will
loop around 2, slowly moving to the left. This corresponds to the spike train or active
phase of the burst. The spiking will continue until y(¢) is pushed to the left of the
homoclinic trajectory. It is not clear, at this point, how y(t) behaves once it passes
the homoclinic trajectory. However, it is reasonable to expect that eventually the fast
dynamics force y(¢) back to the lower branch, and the whole process starts over again.
A key step in finding the chaotic solutions is in understanding how y(¢) behaves as it
passes the homoclinic trajectory. We see that y(#) must, at some point, lie close to
one of the unstable trajectories M, (1) or M (t) defined in (A2). This is illustrated in
Fig. 3(b).
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F1G. 3(a). The trajectory of a bursting solution in phase space. In the passive phase, the solution lies close
to the lower branch. The trains of rapid spikes correspond to the solution passing close to the branch of periodic
solutions.

3. Pillboxes, tubes, etc. We now define various neighborhoods in phase space.
These neighborhoods will allow us to keep track of trajectories as they loop around
in phase space. The basic idea is to put “pill boxes” about the left and right knees,
“tubes” about the lower and middle branches, and annuluslike regions about the
periodic solutions. Of course, these neighborhoods must be defined with care so that
they fit together properly. Moreover, we must make sure that trajectories enter and
exit them in a proper fashion. Throughout this section, we assume that k, <k <k,.

The pill boxes and tubes will be homeomorphic images of the unit cube

C={(xsz):|x|=1,|s|=1,|z|=1}.
We denote the open sides of C by
Co=int{(x,s,z)e C:s=—1}, Cr=int{(x,s,z)e C: s=+1},
Cpr=int{(x,s,z)e C: z= -1}, Cr=int{(x,s,z)e C: z=+1},
Cpx =int{(x, s, z)e C: x =~1}, Cp=int{(x,s,z)e C: x=+1}.

Let E” be the (v, w, y) phase space. Let 7, : E*- E' be the projection map given
by ﬂy(va W, y) =y'
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F1G 3(b). A bursting solution may lie close to the middle branch for a long time before leaving it. This
gives rise to the plateau region in a bursting solution.

DEFINITION. Suppose that % € R® and ®: U - E>. We say that ® is a y-homeo-
morphism from % into E? if

(a) ® is a homeomorphism from % onto its image.

(b) If (x,, 5y, 2z1) € U and (x,, $,, z,) € U with s, =s,, then

(7Ty o D) (x4, 51, 2) = (7Ty o ®)(x3, 83, 25).

All of the maps considered in this section will be y-homeomorphisms. Condition (b)
is natural, because y is the slow variable which is considered as a parameter when
€ =0. In what follows, 8 will be a small positive constant which may decrease in size.

3.1. The right knee and lower branch. The following two propositions follow easily
from the assumptions stated in the previous section. In the first proposition, we define
a neighborhood N, of the right knee. In the second proposition, we define a neighbor-
hood N of the lower branch. It will be attracting in the sense that for € = 0, solutions
of (2.1) which lie on d N; must enter N, in forward time. These sets are constructed
so that the right side of N, is contained in the interior of the left side of N,. When ¢
is small, trajectories which lie in N, must eventually enter N, and then leave N,
through its top side. See Fig. 4

PROPOSITION 3.1.1. There exists a y-homeomorphism ®,: C > E* such that

(a) K,eint(P,(C)).

(b) ®,(C)=M™ N{(v,w,y): y<p+ 8, where 8, was defined in (A4).

(¢) If e =0 and y(t) is a solution of (2.1) with y(t,) €int (®,(C)), then y(t) can

only leave ®,(C) through ®,(Cr ). If y(t) does leave ®,(C), then w(y(t)) < P,
the manifold of periodic solutions defined in (A4).
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FIG. 4. If >0, then solutions of (2.1) which lie in N, must enter N, through L, and can only leave N,
through T,.

(d) If e=0 and y(t) is a solution of (2.1) with y(t,)€d®,(C), then y'(t,) is not
tangent to 4P ,(C).
Let N,=®,(C), T,=®,(Cr), L,=®,(Cy), and y,=(m,°®,)(C.). Note that y, is
well defined, because @, is a y-homeomorphism.

Our next result follows from the previous proposition and the continuous depen-
dence of solutions to an ordinary differential equation on a parameter. It states that
if € is sufficiently small, then any solution of (2.1) which crosses the left side L, of
N, must enter N, and then leave N, through its top side T,.

COROLLARY 3.1.2. If £ >0 is sufficiently small and y(t) is a solution of (2.1) with
v(to) € L,, then there exists t,> t, such that y(t)e N, for t,<t<t, and y(t,)e T,.

We now consider the lower branch. The following results follow easily from the
assumptions.

PROPOSITION 3.1.3. There exists a y-homeomorphism &, : C - E* such that if N, =
®,(C), then

(a) L,eN_forA\-6=y=y,;

(b) Npcut™

(©) (mo®@.)(C)=1-8;

(d) (’”y ° (DL)(CR) =Yo and (I)L(CR) < Lp’

(e) Ife =0, and y(t) is a solution of (2.1) with y(0) e 3(N ) N{(v, w, y): A—86<y<

Y.}, then y(t) enters Ny, transversely, in forward time.

COROLLARY 3.1.4. If £ >0 is sufficiently small and y(t) is a solution of (2.1) with
v(to) € N, then there exists t,=t, such that y(t)e Ny for te(ty, t;) and y(t)€
@, (Cr)= L,.

Combining Corollaries 3.1.2 and 3.1.4 we obtain the next result.
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CoROLLARY 3.1.5. If £ >0 is sufficiently small and y(t) is a solution of (2.1) with
¥(to) € Ny, then there exists t,>t,>t, such that y(t)e N, for te(t,,t,), y(t,)€L,,
v(t)e N, for t;,<t<t,, and y(t,)e T,.

3.2. The left knee. We now define a neighborhood of the left knee in a manner
similar to what we did for the right knee. The following result follows easily from our
assumptions.

PROPOSITION 3.2.1. There exists a y-homeomorphism ®, : C > E* such that if N, =
D,(C), then

(a) KyeN,;
(b) Nyc™,
(3.2.1) (¢) If e=0 and y(t) is a solution of (2.1) with y(t,) €dN,, then y'(t,) is
not tangent to 3N,
(d) If e=0 and y(t) is a solution of (2.1) with y(t,) € N,, then for t>t,,
y(t) can only leave N, through ®,(Cgr). In this case, there exists t, > t,
such that y(t,) € N;.
Let B, =®,(Cpr), R,=®,(Cg), and y, = (7 o ®,)(Cg).

The next result follows from the previous proposition and the continuous depen-
dence of solutions on a parameter.

CoOROLLARY 3.2.2. If € >0 is sufficiently small, and y(t) is a solution of (2.1) with
v(to) € Ry, then there exists t,> t, > t, such that y(t) € N, for te(ty, t,), y(t,) € B,, and
y(t)€ N¢.

3.3. The middle branch. We now construct a “tube” N,,, which contains the
middle branch for y, =y = h+ 5, for some 6,> 0. It will be important to keep track of
which sides of Ny, trajectories may leave or exit, and where trajectories go once they
do leave N,,.
PROPOSITION 3.3.1. There exists a ,>0, and a y-homeomorphism ®,,:C > E*
such that if Ny =®,,(C), and y(t) is a solution of (2.1) with e =0, then
(a) mye Ny fory,=y=h+6,;
(b) Ny <™,
(¢) ®p(CL) =R, and (7Ty oDy )(Cr)=h+6,;
(d) If y(t5) e D0 (Cr)U D (Cyy), then y(t) enters Ny, transversely, in forward
time, .

(e) If y(t,) € ®p (Cr)U D), (Cpk), then y(t) leaves N4, transversely, in forward
time. Moreover, there exists t, > t, such that y(t) Ny, for t € (t,, t,), and either
y(t) € Nu, or y(t;) € Ny.

(f) Ifh<y=h+8,, then each of the periodic solutions p,(t) enters Ny, and crosses
Dy (Cpi ).

Proof. Throughout this proof we consider solutions of (2.1) with ¢ =0. We change
coordinates so that near the middle branch, (2.1) becomes

P =x()p+egpqy),
(3.3.1) q'=—-2(y)q+g:Ap, q,y),
y' =0.

These equations hold for, say, | p| = §, |q| = 8, and y, = y = h+ 8. Here A,(y) and —A,(y)
are, respectively, the positive and negative eigenvalues of (FS) linearized at the rest
points m,. The functions g,(p, q, ¥) and g,(p, g, y) are both o(|p|+|q|) and satisfy
(a) g,(0,q,y)=0for |q|=6 and y,=y=h+5;
(b) g(p,0,y)=0for|p|=8 and y,=y=h+6é.
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Therefore, the local stable manifold at m, , y,=y,=h+ 8, is given by {(p, q,y): p=
0,y =y,}, and the local unstable manifold is given by {(p, q,¥): =0,y =y,}. The
unstable manifold at m, consists of two trajectories, which, as in § 2, we denote by
M;(t) and M, (t). We assume that the local coordinates are chosen so that for
YW=Sy=h+3,

M, (0)=(-8,0,y) and M;(0)=(5,0,y).

Assume that q,, q,, and 8, are positive constants with max {q,, ¢, 6} = 6. Consider
the rectangular neighborhood given by

R=R(q:,9:,8)={(P, 4, »):|P|=8,—q:=q9=q,, ) <y <h+8,}.
We denote the sides of R by
Re={(p,4,y)eR: p=-8,-q,<q<qi},
Rp={(p,q,y)eR:p=8,-¢:<q<qy},
Rr={(p,q,y)eR:|p|<8,q=q\},
Rp.7={(p, g, y) € R:|p|<8,q=—q.}.

By choosing & smaller, if necessary, we may assume that R € /", trajectories enter R
through Ry U Rp. 1, and leave R through Rr U Rp. Note that M, (¢) leaves R through
Ry, and M;(t) leaves R through Rj.

Let ®,,:C~->R’ be a y-homeomorphism such that ®,,(C)=R(q,, g, 6,),
®y(Cr)=Rr, ®y(Cpr)=Rp.1, ®Py(Cp)=Rfr, and @, (Cpx)=Rp. This map
satisfies (a)-(d) of the proposition. We now show that it is possible to choose the
constants q,, q,, and &, so that ®,, satisfies (e) and (f).

In order to verify (e), we must demonstrate that each trajectory which leaves R
must eventually either return to R or enter N,. Note that trajectories can only leave
R through R or Rg. Suppose that ye[y,, h+8,] and vy,(¢) is the solution of (2.1)
with € =0 and v,(0) = (=8, q, ¥) € Rg. Since yo(t) = M, (t) > I, as t > o0, it follows that
if |q| is sufficiently small, then v,(t) € N, for some t>0. Therefore, if g, and g, are
sufficiently small, then every trajectory which leaves Ry must eventually enter N;.

We now consider trajectories which leave R through Rg. For ye[y,, h+8,], let
74(t) now be the solution of (2.1) with e =0 and v,(0)=(5, q, y) € Rg. If y[y,, h),
then yo(t) = M (1)~ 1, as t> . It follows that given 8,, g, can be chosen so that if
<y <h-2§, and |q| < qo, then y,(t) e N, for some t=0.

Now suppose that |y —h|<8,. If q and §, are sufficiently small, then vy,(0) lies
close to M7} (0). The trajectory M (0) returns to R for some ¢ >0 no matter how the
constants q,, q,, and &, are chosen. It is not hard to see that q,, ¢,, and §, can be
chosen so that if |h—y| <8, and —q, < g <gq,, then y,(t) must also return to R. See
Fig. 5. This verifies (e) of the proposition.

Finally, consider the periodic solutions p,(t). These trajectories approach M (¢)
as y - h. Recall that M; (t) leaves R through Ry = ®,,(Cgx). Therefore, choosing &,
smaller, if necessary, we can guarantee that if h<y<h+§,, then p,(t) crosses
Rg. 0

We conclude this section by considering solutions of (2.1), with £ >0, which pass
close to MB.

CoRrOLLARY 3.3.2. If ¢ is sufficiently small and y(t) is a solution of (2.1) with
vy(t,) € Ny for some t,, then there exists t, > t, such that y(t,) € N.. Moreover, y(t) can
only leave Ny, through ®,,(Cg), ®p(Cgk), or ®p (Cy).
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F1G. 5. Various objects used in the proof of Proposition 33.1. In (a), h—8, <y <h, while in (b),
h<y<h+38,. In both cases, solutions which leave R through Rgz must, at some later time, enter R through R.

Proof. Since y’'<0 in N, y(t) must certainly leave N,,. From the preceding
proposition, continuous dependence of solutions on a parameter, and the fact that
¥'<6 in Ny, it follows that if € is sufficiently small, then y(¢) can only leave Ny,
through ®,,(Cr), @ (Cpk), or @, (Cp). If y(t) leaves N, through ®,,(C,), then it
follows from Corollary 3.2.2 that y(t,) € N, for some ¢, > t,. If y(t) leaves N, through
D (Cr) U Dy (Cpk), then from the preceding proposition, either y(¢) returns to Ny,
or y(t;)e N, for some t,>t,. However, for € >0, y(¢) can certainly only return to
N, a finite number of times without crossing through N . 0

3.4. The periodic solutions. Recall from (A4) that each of the periodic solutions,
py(1), is asymptotically stable as a solution of (FS). Hence, for each y € (h, p + &,) there
exists a compact neighborhood of p,(t) in (v, w) phase space which is attracting. For
this reason, the following proposition follows easily. For the statement of the result
we let

A={(x,s z):3=x*+2*=2,-1=s=1},
Sp={(x,s2)eA: x=0, z<0},

A ={(x,s,z)eA: s=—1},
Ar={(x,s,2z)e A: s =+1},
Ap={(x,s,2)€dA: |s| <1},

3, =A NZp.

PROPOSITION 3.4.1. There exists a y-homeomorphism ®p: A- E* such that if Np =
®(A), and y(t) is a solution of (2.1) with £ =0, then

(a) Npcul™;

(b) If y(t,) e Pp(Ap), then y(t) enters Np, transversely, in forward time;
(o) (7Ty °o®p)(AL)=h+6,, and (7Ty °o®p)(Ar)=p+8o;

(d) ®p(2L) = Pp(Chi).

The reason we can choose ®p so that (3.4.1)(d) holds is because of Proposition
3.3.1(f). From continuous dependence, it follows that if e is sufficiently small, then
every solution of (2.1) which lies in ®,(A,) must enter N,,. Moreover, if € >0, then
¥'<0 in Np. Therefore, if ¢ is sufficiently small, then every solution of (2.1) which

(3.4.1)
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lies in Np, must leave Np through ®,(A,) and then enter N,,. By choosing ¢ small
we can guarantee that when this trajectory enters N,, it does so at a point whose
y-coordinate satisfies y > h. This is because of (3.4.1)(c). We summarize this last
paragraph in the next corollary.

CoROLLARY 3.4.2. If € is sufficiently small and y(t) is a solution of (2.1) with
v(to) € Np, then there exists t,> t,> t, such that y(t) € Npfort,=t=t,, y(t,) e ®p(A,),
y(t)e M™ for te (1, t,), and y(1,) € Ny Moreover, m,(y(t,))> h.

4. Existence of a bursting solution. We now use a fixed point argument to show
that there must exist a periodic solution of (2.1) if k, <k <k, and ¢ is sufficiently
small. This corresponds to the bursting solution. We demonstrate that for ¢ sufficiently
small, the set T,,, which was defined following Proposition 3.1.1, is mapped continuously
into itself by the flow. The existence of a periodic solution then follows from the
Brouwer fixed point theorem. See Fig. 6.

Fix yo€ T,, and let vy.(t) be the solution of (2.1) with y(0)=1vy,. If £ =0, then
v(t) approaches one of the periodic solutions p,(t) as t > 0. Therefore, if ¢ is sufficiently
small, then y(t,) € Np for some t,> 0. We now apply Corollaries 3.1.5, 3.3.2, and 3.4.2
to conclude that there exists g, such that if 0 < e < g,, then there exists t,> ;> t,> t,
such that y(1,) € Ny, v(t3) € Np, and y(t,) € T,. Let I'(yy,) = y(t4). Certainly, g, can be
chosen independently of vy,, and I' is continuous. Hence, I' must have a fixed point.
This fixed point, of course, corresponds to a periodic solution of (2.1).

5. Continuous spiking. In this section we consider the existence of continuous
spiking. Recall that this corresponds to a stable periodic solution of (2.1) which always

=y

w

F1G. 6. Various sets used to prove the existence of a bursting solution. Every solution of (2.1) which lies
in N, must, at some later time, lie in N,, Np, Ny, and then return to N, .
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lies near the manifold 2. For our result, it will be necessary to make two additional
assumptions concerning the nonlinear functions in (2.1). The first assumption is
concerned with the periodic solutions p,(t) of (FS). Since (FS) is two-dimensional,
each solution p,(f) can have only one Floquet multiplier, say B,, which is not unity.
We assumed, in (A4), that each trajectory p,(t) is asymptotically stable. Hence, |8,| = 1.
We now make the following additional assumption.

(A8) There exists a, h < a <p, such that if h<y <a, then |B,|<1.

This assumption will allow us to conclude that the two-dimensional, invariant manifold
P perturbs for ¢ small.
For our second additional assumption, we recall the notation defined in (A6).

(A9) If k, <k<k,, then 9g/dk(v, w, y, k) >0 in some neighborhood of the homo-
clinic orbit M (y).

Remark. This last assumption is satisfied for the B-cell models mentioned in the
Introduction. For those models, dg/3k >0 everywhere.

In (A7), we assumed that if k= k;, then ? < M. In particular, p,(t) € My, for
all «. Choose ko€ (ky, k,] so that if k e[k, ko], then p,(t) € M} for all . We can now
state the main result of this section.

THEOREM 5.1. Assume that k, <k <k,. If ¢ is sufficiently small, then (2.1) gives
rise to continuous spiking.

Remark. The range of € for which the theorem holds depends on the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>