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a b s t r a c t

Today, based on brain imaging analyses, we can consider the brilliant metaphor about
event discreteness of the conscious process by William James (1890) to be an ex-
perimental fact. Such events compose sequences: linguistic, episodic memory, motor
behavior, etc., whose dynamics are robust, reproducible, and sensitively react to incom-
ing informational signals. The human mind is able to process, understand and predict
time-dependent information about the environment and about ourselves, and generate
corresponding commands to control behavior. Many experiments have indicated that
the mind relies on sequential dynamics to carry out these tasks. Based on brain
imaging experiments, we discuss here a set of key principles and their instantiation
in nonlinear differential equations to form a dynamical theory of consciousness and
creativity. General hierarchical models of consciousness and creativity include cou-
pled low-dimensional equations that govern cooperative variables for several cognitive
modalities: episodic (semantic) memory, working memory, attention, emotion, percep-
tion and their sequential interaction. In the phase spaces spanned by variables of these
models, the joint transient dynamics of cognitive modalities is represented by coupled
heteroclinic networks which share complex metastable states. The interaction of such
states is responsible for the robustness of transient neural dynamics involved in the
generation of thoughts and in the programming of behavior. In the framework of the
analyzed dynamical models, we discuss the interaction of cognitive processes and the
generation of new information in creativity.

© 2020 Elsevier B.V. All rights reserved.
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One of the most fascinating things

in human life is to think about

how we think, create a poem

and represent our own future.

1. Introduction

1.1. Sequential cognitive processes

It is a pity, but we have to admit from the start that we are not planning to discuss here the question what is the origin
of the first thought?, which resembles the question what is the origin of life? Do brains themselves control thoughts or is
it just the action of external agents? From time to time, these fundamental questions are discussed in the literature with
different provocative answers. Some authors even suppose that our Universe holds responsibility. Of course, there is no
theorem proving that such hypotheses are wrong. Unfortunately, we are not ready to discuss these subjects here.

By now it seems universally accepted that human activities, including cognition, are sequences of elementary acts:
operations, techniques or procedures, replacing one another in time. Just recall dancing, playing musical instruments,
making coffee or speaking at a conference. Any of these processes, if abstracted from the mechanisms for generating
elementary actions, can easily be modeled mathematically with the help of chain models. The meaning of the sequential
items succeeding each other, of course, can be different. However, in spite of such easiness, if we think about how a
program of this behavior is created in the brain, i.e., how one item of the chain is replaced by another one, and why this
chain is robust, the task may seem very complicated and even unsolvable. Such impression becomes even stronger if we
try to understand the future consequences of our actions in the present.

This explains the point of view that intellect and, especially, consciousness are by themselves so intriguing and even
mystical phenomena that they are inaccessible to formalization and not amenable to a mathematical description. The
purpose of this review is to present an alternative point of view and, if not to convince the readers, then, at least, to
interest them so much that they themselves begin to reflect on how we think, and the paper will supply new ideas for
this contemplation. We will focus on recent experiments, models, and evolutionary approaches to illustrate a theory,
based on the methods of nonlinear dynamics, which describes the richness of cognitive phenomena: decision-making,
attention, working memory, and the result of their integration, i.e., consciousness and creativity processes (see Fig. 1.1).

The success and beauty of this theory are based on the universality of the dynamical approach for the description of
fundamental types of spatiotemporal activity of the human brain, including perception of the environment, thinking and
decision making, action programming, and, finally, behavior. Uncovering the principles of mind dynamics is a task that
relies on ideas and expertise from a number of different inter-related disciplines like neuroscience, physics, psychiatry,
linguistics, philosophy, social sciences, neuro-technology and others. Universality of these principles may also imply a
new approach for the creation and analysis of artificial intelligence systems and biomedical applications as we will also
discuss below.

From this perspective, ‘‘the mind’’ can be seen as a functional space that contains mathematical images of different
cognitive processes. The focus on robust sequences to describe such processes allows an adjustable low-dimensionality
for this space. If the space harbors many modalities of thought, it should be endowed with a hierarchical structure and

mechanisms for the coordination of dynamics — synchronization, binding, and chunking [1].
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Fig. 1.1. Nonlinear dynamics provides a key to link brain and cognitive activity on different levels of the neural system’s hierarchy. Brain imaging
experiments are used to describe the dynamics and structure of functional neural networks. Dynamical models integrate this information to disclose
fundamental principles observed in imaging and electrophysiological experiments, such as the robustness of sequential processing in cognitive activity,
e.g., in creative tasks such as jazz improvisation. Predictions from these models can be used in new interpretations of experimental observations
and in biomedical applications.

1.2. Sequences and metastable states

The main current interest in cognition is focused on the understanding of the relation between the architecture
(connectome) of the global brain network [2] and the dynamics of the corresponding mental processes [3–7]. To address
this goal we need to formulate mathematical models based on dynamical principles that support experimentally observed
features of hierarchical sequential processes [8–12] (see also an alternative point of view in [13]), such as stability against
spatiotemporal noise on different scales, reproducibility, and minimization of the resources.

There are two different but interdependent dynamical hierarchical structures that are related to consciousness. The
first one dynamically links stages of brain organization from genes to consciousness [14]. The second hierarchy is the
organization of the different mental processes like attention, working memory, binding, chunking, etc., in the mental
space or in the phase space of corresponding dynamical models [15].

Many experiments suggest that the brain uses discrete economic strategies to represent, generate and process cognitive
information, e.g. [9,16–18]. These strategies include the analyses of hierarchical recurrent brain networks that enable and
provide low-dimensional descriptions. In particular, such analyses can address self-awareness dynamics that is responsible
for interacting with the environment [19,20]. Sequential transient brain dynamics can be seen as the result of sequential
switchings of observable metastable states [21–23]. Formally, ‘‘meta-stable’’ means ‘‘beyond stability’’, but not necessarily
‘‘beyond existence’’. This includes situations with invariant sets still present but unstable. The system approaches such
states (unstable equilibria or unstable periodic orbits) along their stable manifolds, hovers for a certain time sufficiently
close to them and departs along the unstable manifolds [24]. In the theory of dynamical systems, the paths (phase
trajectories) between different metastable states are called ‘‘heteroclinic trajectories’’.

We will see below that many patterns of cognitive activity can be considered as built around such heteroclinic
structures. The corresponding variables that organize this space depend on the type of measurement. One of the most
popular and effective approaches to select such variables is encoding of mental processes by means of principal component
analysis [25] that within the last three decades has been successfully applied to brain data [26,27] (see Fig. 1.2).

At first glance, the world seems to us a continuous stream of percepts. However, recent experiments suggest another
point of view in which the integrated processes of perception could operate in a discrete manner, just like movies consist
of discrete scenes [28].

1.3. Winnerless competition principle

In the last decade, under the influence of impressive experimental work, studies of the spatial and temporal activity
of the brain during the performance of cognitive functions (analysis of functional magnetic resonance patterns) have
established that the functional cognitive activity of the brain is a robust transient process [29,30]. In addition, evidence
suggests that consciousness and creativity result from mutually coordinated activity of several cognitive subnetworks in
the brain [31]. Different clusters of networks perform different cognitive functions. Each of these networks unites a large
number of brain substructures. Transient dynamics, corresponding to the cognitive process, is not a homogeneous drift

across the mind; rather, the mind sequentially wanders from one item to another. As a consequence of mutual inhibition
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Fig. 1.2. Encoding conscious visual perception in robust, transient mental dynamics. The plots correspond to the processing of magnetoencephalo-
raphic (MEG) data with high resolution in space and time and the associated principal component (PC) analysis. (A) Distribution of variance over
rincipal components. (B) Trial-averaged activity trajectories in the subspace, spanned over three leading principal components for seen and unseen
rials separately, under the presentation of the right-tilt (blue and cyan) or left-tilt stimulus (red and orange). Both plots show the same trajectories
i.e. gray trajectories in each plot are the same as colored trajectories in the other plot), units are in femtotesla (fT).
ource: Adapted with permission from [27].

Fig. 1.3. Schematic representation of the space–time hierarchy in the brain, as measured by different experimental techniques. Intracellular and
xtracellular recordings measure neuron activity at the single neuron and local network levels. Electroencephalography (EEG), functional magnetic
esonance imaging (fMRI) and magnetoencephalography (MEG) can record sequential activity at different brain regions with complementary temporal
nd spatial resolution.

mong the items, the process cannot find ultimate rest near one of them: the new local mode of instability drags it further
o the next item. Taken together, this combination of instabilities results in the perpetual successive change of the items,
overned by the WinnerLess Competition principle (WLC) [32].
The WLC is observed in nonlinear dissipative multi-agent systems of different nature: ecological, social, physiolog-

cal etc. In brain dynamics, the WLC principle is closely related to another fundamental principle of cognition: the
ow-dimensionality of functional cognitive dynamics [15,21,33–35].

By cognitive dynamics we refer to the dynamical aspects of cognitive processes. In our analysis, we do not focus on the
etails of the physical brain elements that support cognitive activity. From this perspective, we describe the processes of
hinking and creativity, which require the integration of distinct spatiotemporal scales (see Fig. 1.3) of different cognitive
odalities. Thus, we employ methods and results of quantitative studies of mental activity and its features as a dynamical
rocess. The dynamical patterns that underlie robust sequential dynamics are associated with information flows whose
ain features can be described by a heteroclinic network model approach.
The corresponding dynamical theory is based on finding the relationships between the brain global networks (as

bserved, for example, in functional magnetic resonance imaging (fMRI) experiments) and the dynamic brain patterns
visualized in the form of different phase portraits). Since the neuronal activation of specific brain regions is accompanied
y the increase of cerebral blood flow through them, this technique delivers adequate maps of local and global brain
ctivity, see an example in Fig. 1.4.
4
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Fig. 1.4. Low-dimensional signatures of cognitive tasks. The time series of each principal component (tPC) of fMRI recordings is used for providing
low-dimensional subspace in which the state space manifold is embedded. The low-dimensional manifold is traversed by the global brain state
cross the first three dimensions, with arrows depicting the direction of flow along the manifold.
ource: Adapted from [36] with the permission of Springer Nature.

Fig. 2.1. Illustration of a heteroclinic channel, a useful mathematical object enabling robust transient dynamics, in the phase space. Panel A: sequence
of static metastable states representing the informational items: the saddle equilibria Sk , with index k numbering the items. Panel B: sequence of
ynamical metastable states — in this case, the mathematical images of these informational items are saddle periodic orbits.
ource: Adapted from [43].

. Functional cognitive heteroclinic networks

.1. Elements of heteroclinic networks in the phase space

Spatiotemporal functional network dynamics can be considered as sequential [37–39]. The vast variety of cognition
nd behavior can be better represented when understood through the temporal switching between different network
odes (cognitive modes). To be robust and computationally efficient, the dynamics of these modes has to satisfy a set of
rinciples that we will discuss below.
Cognition is a transient process, it is neither a state of equilibrium nor an exactly periodic oscillation, therefore in the

orresponding phase space it cannot be effectively represented by attractors with predictable dynamics, such as stable
ixed points, limit cycles or tori. For the brain to effectively adapt to handle multiple flexible cognitive processes, it must be
ble to work in transient modes for a specific cognitive task [22,40]. A convenient approach is to represent these processes
s metastable states that emerge in a spatiotemporal setting [41,42]. In this way, a number of cognitive processes can
perate with similar modes, e.g. over the similar set of the spatial patterns, and can achieve numerous goals through
wide variety of switching sequential patterns across different metastable states [21,34] see Fig. 2.1. In this context,
etastable states represent informational items related to cognitive coding, such as a sensory perception (e.g. visual,
uditory, olfactory patterns), a cognitive decision, a memory engram, etc. Some items can require a single metastable
tate while others need a chain of such states.
Cognitive/mind dynamics that corresponds to global brain mode competition satisfies the Winnerless Competition

rinciple (WLC). The WLC principle was first formulated to describe spatiotemporal coding in sensory information [32,34,
4]. Sequential coding of sensory information means including time in the coding space (see Figs. 2.2 and 2.3).
Beyond sensory processing, the WLC principle can also be directly related to the general sequential dynamics of

etastable brain states that are activated by internal or environmental stimuli. WLC dynamics is typical for brain
5
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Fig. 2.2. Experimental evidence for transient sequential dynamics in the encoding of the insect olfactory system. The panels illustrate the spatio-
emporal representation of sensory information in the locust antennal lobe [36]: (A) Schematic representation of the antennal lobe sectioned through
ts equatorial plane; (B) response of 110 antennal lobe neurons to an odorant lasting 1.5s; (C) projection of neural activity on a 3D principal component
pace (black trajectory is the average of 10 different experiments).
ource: Adapted with AAAS permission from [34].

Fig. 2.3. Experimental evidence for transient sequential dynamics in mammals. Rat gustatory cortex neurons generate taste-specific sequential
patterns [45]. (A) Panels show the sequential activations among 10 cortex neurons in response to four taste stimuli: sucrose, quinine, citric acid and
NaCl. (B) Four additional sequences for the same neuron ensemble showing the reliability of the sequences. Sequences are highly reproducible in
spite of the irregularity in their switching times.
Source: Adapted with permission from [45]. Copyright 2007 National Academy of Sciences.

functional networks with excitatory and inhibitory connections [46]. This approach allows us to adequately describe a
wide variety of cognitive phenomena such as the limitations of working memory capacity [47–49], attention focusing and
attention switching [43,50,51], the dynamical interaction between emotion and cognition [52], speech production [53]
and, potentially, the dynamics of mental disorders [52,54].

2.2. Robustness against noise and sensitivity to informational signals

Since cognitive dynamics, as a rule, involves many metastable states, a new global dynamical object is required to
describe sequential activity that does not depend sensitively on initial conditions: this is a stable heteroclinic channel
(SHC) — a narrow pathway in the phase space, built around the appropriate itinerary of heteroclinic orbits. Depending
on the particular situations, the channel can be closed (and then the dynamics becomes cyclic) or open. Open heteroclinic
channels serve as the pathways of transient sequential activity in neural circuits [55]; the conditions in which such
channels are robust (i.e. the trajectories do not leave them in the middle of the path) are formulated in terms of the
linearization eigenvalues of the participating metastable states of equilibrium.

Despite of their relative robustness against noise, cognitive tasks are sensitive to small environmental and intrinsic
stimuli. There is a growing recognition that the adaptive networks which support cognition change over time, and that
some aspects of these connections may be transient [56]. These can also be seen as an interconnected network formed by
6
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Fig. 2.4. Illustration of how sequential brain activity during a memory recall relates to recall behavior. Each point on the x-axis corresponds to a
1.8 s interval (during the 3-min recall period). The blue, red, and green lines correspond to a classifier’s estimate as to how strongly the subject
is reinstating cognitive sequential patterns characteristic of face-study, location-study, and object-study at that point in time. Each line indicates
the primacy of a given network in the sequential switching between cognitive processes overtime. The graph illustrates the strong correspondence
between the classifier’s estimate of category-specific brain activity, and the subject’s actual recall behavior.
Source: From [69]. Reprinted with permission from AAAS, cf. Fig. 1.1.

active dynamic states with hierarchical connective properties and by other nodes that carry out more sensory or reactive
roles [11] (see below). A possible resolution to the fundamental contradiction between robustness and sensitivity in WLC
dynamics arises from the fact that noise and informational signals influence the SHC in two qualitatively different ways.
Noise can just change initial conditions for the trajectories inside the channel, and if inhibition is strong enough, the
disturbed trajectories stay captives of the channel, whereas the channel itself is robust. In contrast, small information
signals can excite new participants: modes that qualitatively change the architecture of the SHC. Such alteration of the
channel topology represents the reaction to new information.

Recently, many investigators have suggested the inclusion of a temporal dimension when encoding cognition. For
example, Janoos et al. investigated the temporal structure of spatial activity maps in a state-space model for cognitive
functions which provides a spatially varying estimate of the hemodynamic response [57]. Similarly, Kriegeskorte et al.
focused on the low-dimensional feature-space for representing the data [58]. In this last paper, the set of fMRI data
acquired during a mental arithmetic task was analyzed to characterize the spatiotemporal information about specific
mental processes. Research in language comprehension and decoding provides a clear example of the importance of
including time in the cognitive coding space, requiring the dynamic interaction between multiple brain regions [59].
Furthermore, recent EEG-based experiments have disclosed the existence of microstates — short-lived basic patterns of
electric fields [60] that can be associated with metastable states. A general approach to model microstates, that aims at
capturing the statistical properties of microstate sequences has been proposed in [61].

2.3. Sequential cognitive activity

Neuroimaging research over the past decade has revealed a detailed picture of the intrinsic organization of the human
brain. However, because of the complexity of neural organization and the huge variability of cognitive functions, finding
an exact mapping between brain activity and behavior is an extraordinarily difficult problem, with few exceptions (e.g. see
Fig. 2.4).

Brain imaging methodology has been primarily data-bound, typically imaging data is collected in 3-dimensional pixels
(voxels) over a time dimension that yields a 4-dimensional matrix. The time series for these voxels are associated with
either an external stimulus (using a correlation approach) [62–64] or an internal stimulus (using a connectivity ap-
proach) [65,66]. These approaches attempt to determine meaningful data-derived signals. Multi-voxel pattern analysis [67]
and multivariate Bayesian decoding [68] provide a way to integrate multiple voxels in predicting or classifying brain
states. However, with our understanding of the existent parameters of human cognition, we propose an analysis that is
based on a relatively low-dimensional predictive non-linear dynamic modeling; the models can be fitted to existing data
and extended towards extrapolation of data. The specific features of functional cognitive dynamics, i.e., phase portraits
and time series, are determined by the architecture of the corresponding large scale brain networks (see Table 1). Such
modeling approach allows designing heteroclinic skeleton architectures to naturally implement multiscale coordination
phenomena such as synchronization, binding or chunking (grouping).

2.4. From main principles to heteroclinic dynamics

Derivation of a generalized dynamic model of cognitive processing requires the formulation of a set of mathematical
equations that dictate adherence to generalizable principles [50]. Thus, the approach requires that: (i) equations govern
7
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Table 1
Heteroclinic skeleton networks, phase portraits in their neighborhood and associated cognitive
phenomena represented by these dynamical objects.

the variables that represent the evolution of neural elements in their temporal coherency, and solutions of those equations
correspond to metastable patterns associated to cognitive processes; (ii) the model is endowed with WLC dynamics – a
nonlinear process of interaction among many informational items in the form of spatiotemporal modes – that enables
sequential switching between metastable states and the potential robustness of transient creativity dynamics, (iii) the
model exists as an open dissipative system with overall balance between inhibition and excitation, and (iv) the dynamics
of the model has to be sensitive with respect to memory and environment information.

Projection functions model the spatial components of the modes and can be interpreted as signatures of the functional
rain networks on which cognitive processing is based. We represent the spatial and temporal dependence of such
rocesses as a superposition:

R(l, t) =

M∑
m=1

Pm(l, t) (2.1)

here Pm(l, t) = Rm(t)Qm(l) denotes the mth spatio-temporal mode that depends on time t and is based on the set of
iscrete coordinates l in the physical brain space, the non-negative real function Rm(t) describes the temporal evolution
f the mth mode whose spatial structure is represented by Qm(l), the projection function of the mth mode, and M is the
verall number of modes. We are seeking a normal form — a structure of the minimal complexity (e.g. a polynomial of the
owest degree) that ensures all relevant types of dynamics. To keep the amplitudes non-negative, the right hand side of
he evolution equation for each mode should be proportional to the amplitude of this very mode. Accordingly, the normal
8
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orm in this situation is, for each mode, an ordinary differential equation with the simplest quadratic nonlinearity:

dPm

dt
= Pm(l, t) ·

[
γ̃m

−

M∑
k=1

ζ̃mkPk(l, t)

]
. (2.2)

Here, γ̃m is the level of excitation of the mode m, whereas ζ̃mk is the level of its inhibition by the mode k. Substituting
here (2.1) with subsequent summation, we arrive at the form of the canonical ecological model — the set of generalized
Lotka–Volterra (GLV) equations [43]:

θm
dRm

dt
= Rm

[
γ̃m(Xm, Sm) −

M∑
k=1

ζ̃mk(Rk, Sm)Rk(l, t)

]
. (2.3)

here Xm is the input from the other levels of the network hierarchy, as defined below in Eq. (2.4), whereas Sm is the
ensory input for the mth modality. Here, θm =

∑
l Q

m(l) ≥ 0, γm
= γ̃mθm and the matrix elements ζmk

= ζ̃mk ∑
l Q

m(l)
k(l) are non-negative. The interaction among Km cognitive modalities, e.g., attention, perception and emotion, can be
epresented by their own sets of modes (cf. (2.1)):

Xm(q, t) =

Km∑
i=1

xmi φm
i (qm) (2.4)

here φm
i is the projection function of the ith mode of the mth modality. We arrive at the generalized canonical form:

τm
i
dxmi
dt

= xmi ·

⎡⎣σm
i (Rm, Sm, Cm) −

Km∑
j=1

ρm
ij x

m
j −

M∑
k=1

Km∑
j=1

ξmk
ij xkj

⎤⎦ (2.5)

τm
i =

∑
qm

φm
i (qm), (2.6)

where ρm
ij is the inhibitory connectivity matrix between modes of the same modality, and ξmk

i is the connectivity matrix
between modes of different modalities. It is reasonable to assume that σm

i ∼ τm
i , ρm

ij ∼
∑

qm Φm
i (qm)Φm

j (qm), σ , ρ ≥ 0.
Remarkably, the generalized Lotka–Volterra equations also naturally appear in the continuum limits of large-scale

eural networks, i.e., in neural field models, where they characterize stability of spatially non-constant stationary states
n heterogeneous fields for specific synaptic interaction kernels [70]. Lotka–Volterra models are a convenient framework
o discuss dynamical aspects of synchronization, coordination and binding [44,71–75]. An important property of the
eneralized Lotka–Volterra equations is the presence of many invariant hyperplanes in their phase space: if any of the
ariables Rm in (2.3) or xmi in (2.5) is initially set at zero, it stays zero all time. A corollary of this, most important in
ur context, is the robust heteroclinic dynamics. In generic dynamical systems, the heteroclinic connections (trajectories)
etween the metastable states of equilibrium are structurally unstable (see below), and exist only at specific combinations
f the governing parameters: a minor variation of the parameters destroys them. In contrast, within the class of
eneralized Lotka–Volterra equations, the heteroclinic trajectories between the saddle points are structurally stable and
xist in open regions of the parameter space.

.5. Existence and stability of heteroclinic sequential dynamics. Bifurcations. Fluctuations.

In this subsection, we discuss the robustness and stability of heteroclinic trajectories between the metastable states.
e call the heteroclinic cycle or channel stable if all trajectories that start in its sufficiently close vicinity, stay forever in

he neighborhood of this cycle/channel. Concerning robustness, we denote by this term the structural stability of the vector
ield: the heteroclinic connection is robust, if it persists at all sufficiently small variations of the system parameters.

Here, for brevity, we restrict ourselves to metastable states that are just hyperbolic saddle equilibria S1, . . . , SN of an
-dimensional dynamical system [76] (see panel A of Fig. 2.1). Heteroclinic connections between the saddles in dissipative
ynamical systems are generically fragile due to the topological argument. A trajectory from S1 to S2 should simultaneously
elong to the unstable manifold W u

1 of S1 and to the stable manifold W s
2 of S2. If the dimensions of stable manifolds

oincide: dim(W s
2) = dim(W s

1), then W u
1 and W s

2 generically would not intersect along the (at least) one-dimensional
urve; this hinders the existence of the robust heteroclinic trajectory. If dim(W s

2) > dim(W s
1), there is a generic connection

from S1 to S2, but no generic connection from S2 back to S1. A longer chain of robust connections would imply the growth
of the dimension of the stable manifold along the chain. For obvious reasons, this is possible only for finite (commonly,
quite short) lengths, and forbids the existence of closed contours.

To enable robust heteroclinic connections between the saddles, a dynamical system should be endowed with a
particular structure of the phase space. Two classes of such systems that often appear in applications are (i) the systems
with discrete permutational symmetries [77] and (ii) the systems whose phase space is sliced by a sufficiently large set
9
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f invariant (hyper)planes [78]. The setup in which the variables can be permuted includes the very first documented
xample of robust heteroclinic contour between three unstable patterns: the description of thermal convection in a
otating fluid layer [79], as well as different modifications of systems of globally coupled identical one-dimensional
hase oscillators where the structurally stable heteroclinic orbits result in the phenomenon of so-called ‘‘slow switching’’
80–83]. Robust heteroclinic connections can also arise in the situations where the individual networks are identical but
he coupling pattern is heterogeneous [84]. Permutations and/or units with identical on-site dynamics seem to be hardly
elevant for our context: different modalities in the brain refer to fundamentally different activities and, hence, are not
nterrelated by permutation symmetries. Instead, in cognitive dynamics the situation (ii) is widespread: as recognizable in
he canonical equations (2.2) or (2.5), the generalized Lotka–Volterra models offer a rich structure of invariant hyperplanes
pon which groups of the variables identically vanish. Here, in a typical situation, the heteroclinic trajectory between
wo saddle steady states entirely lies inside the quadrant of the two-dimensional invariant plane; within this plane one
teady point is a saddle whereas the other steady point is the sink. Since the reduction of the Lotka–Volterra equations
ith inhibitory quadratic nonlinearities onto this quadrant can contain neither orbits going to infinity nor closed phase
rajectories, the unstable manifold of the first point is obliged to end in the sink, thus serving for the robust (as long as
he canonical setup is preserved) heteroclinic connection.

Existence of heteroclinic orbits is not sufficient for their observability: for this purpose, stability with respect to
ufficiently small perturbations is required, so that the trajectories that start close to heteroclinic solutions, approach
hem in the course of time. For the trajectories in the heteroclinic channel, the overwhelming proportion of time is spent
n slow motion near the steady states, therefore their stability is dominated by the properties of linearization near those
tates. Let the eigenvalues λ

(i)
1 , . . . , λ

(i)
n of the Jacobian matrix of the system linearized at the ith equilibrium Si be ordered

in such a way that λ
(i)
1 > · · · ≥ Re λ

(i)
m > 0 > Re λ

(i)
m+1 ≥ · · · ≥ Re λ

(i)
n . Then, on the mi-dimensional unstable manifold W u

i
of Si there is a strongly unstable one-dimensional manifold, tangent to the first eigenvector. The ratio of eigenvalues

νi = −
Re λ

(i)
mi+1

λ
(i)
1

(2.7)

s known as the saddle value [85]. Heteroclinic channels, or cycles, are attracting provided that the product of all saddle
alues in the channel P =

∏
i νi is larger than 1. Geometrically, the condition P > 1 implies that during the passage along

uch channel, contraction in the phase flow dominates over expansion. Notably, each saddle, taken alone, is not obliged
o keep its saddle value above 1: what matters for the stability of the motion along the channel is the product over all
etastable steady states in the channel. In this way the strongly contracting saddles can counteract the destabilizing
ction of the weakly expanding ones.
Within the class of the generalized Lotka–Volterra equations (2.5), the robust heteroclinic orbits exist in large regions of

he parameter space, and are stable in the sizeable subset of the domain of their existence. Statistics for the probability to
bserve sequential heteroclinic dynamics in a set of canonical equations with randomly chosen coefficients was computed
nd discussed in [86]. Variation of parameters may lead the system outside the stability region: destabilize or destroy the
eteroclinic channel. For general analysis of this situation see e.g. [87]. Among the possible mechanisms of destruction,
elevant for our setup, we mention the situation where the new state of equilibrium enters the positive orthant of the
hase space. On the way, it collides and exchanges stability with one of the saddle points participating in the heteroclinic
onnection. As a result, the heteroclinic orbit disappears in the course of this transcritical heteroclinic bifurcation [88]; it
s replaced by the stable state of equilibrium.

Another bifurcation scenario is related to the changes in the local characteristics of the saddle points. If, in the course
f the parameter variation, the product of all saddle values (2.7) turns smaller than 1, the heteroclinic cycle, albeit still
xisting, can lose asymptotic stability [89]. A usual stable limit cycle with long (but finite!) period bifurcates from the
eteroclinic trajectory and inherits its stability; locally, the sequential character of behavior does not change much: the
ttracting trajectory is still passing at close (but finite!) distances from the metastable states.
In the simplest configuration, unstable manifolds of all saddles are one-dimensional. An increase in the dimension

f unstable manifolds enriches the dynamics, creating possibilities for scenarios that are more elaborate than the mere
yclic repetition (see e.g. [90]). In the situation when the unstable manifolds of the equilibria are two-dimensional, their
nion can form an attracting non-smooth two-dimensional ‘‘heteroclinic torus’’. Although on its invariant surface no chaos
s possible, every single orbit is unstable [91]. Another kind of two-dimensional attractor for the sequential dynamics,
quivalent to the flow either on the 2d-cylinder or on the Möbius strip, has been described in [92]. The hierarchical setup
f heteroclinic orbits, characterized by the interaction of several typical timescales, was addressed in [93]. An interesting
ariant for the solution of the, in a sense, inverse problem, was suggested in [94]: if a heteroclinic network with known
roperties, based on the set of saddle equilibria, is desired, what should be the connectivity matrix? Algorithms for the
dentification of metastable states and heteroclinic connections in experimental data, including the recordings of event-
elated brain potentials, have been proposed in [95,96]. Furthermore, cognitive sequential activity can be viewed in the
eneral context of chaotic itinerancy, see e.g. [97,98].
Dynamical systems (2.2) and (2.3) are deterministic. On the other side, neuronal dynamics at the microscopic level

s permanently affected by various kinds of fluctuations. The most straightforward effect of additive noise was reported
lready in the very first publication on heteroclinic cycles by Busse and Heikes in 1980: ‘‘existence of noise prevents the
10
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mplitudes from decaying to arbitrary small levels’’ [79]. As a result, the trajectories are forced to leave the vicinity of
etastable states, and the duration of the motion effectively becomes finite: the heteroclinic orbit is replaced by a noisy

imit cycle. For estimates of the dependence of duration on the noise amplitude, see e.g. the paper of Kifer from 1981 [99]
nd later work [100]. A richer, highly non-trivial role is played by noise when it acts upon not a single heteroclinic
ycle, but a heteroclinic network: a union of several heteroclinic cycles sharing some of the equilibria and connections
etween them. A competition between the different heteroclinic cycles in the network is influenced by noise [101]:
epending on the character of the underlying deterministic dynamics, trajectories may display random switching between
he heteroclinic cycles, or, in contrast, follow some of those cycles within arbitrarily long time, reinforcing or reversing
he deterministic preferences. For the heteroclinic orbits that arise in the generalized Lotka–Volterra equations (2.5), it is
easonable to distinguish between the action of the additive noise (here, special precautions should be met to ensure that
ll variables stay positive), and the multiplicative noise: the relative contribution of the latter wanes when the system
pproaches the states of equilibrium. Analysis, performed in [102], showed that properly tuned additive noise is able to
eplace the heteroclinic cycle by the limit cycle in its vicinity; this would result in a narrow-band rhythmic activity of
he system. Unlike additive noise, the multiplicative one does not destroy the heteroclinic cycle: duration of stay near
etastable states grows when the intensity of the multiplicative noise is raised, and beyond a threshold noise level the
equential switching ceases. In the more general context this implies that heteroclinic channels are persistent against
ultiplicative noise, and are able to transmit information with high signal-to-noise ratio.

.6. Complex dynamical networks in simple systems

The hierarchical canonical model described above is based on a neuronal activity rate description and can be
eneralized for the case of spiking neuronal ensembles, see [103]. Presence of non-symmetrical reciprocal inhibitory
onnections between neuronal groups that form specific cognitive modes requires stable heteroclinic channels. Both
rate- and spiking-based canonical models models have SHCs in their phase spaces. In such models, SHC implements
robust sequential dynamics, which is typical for a wide variety of cognitive activities. Heteroclinic dynamics delivers an
appropriate mathematical framework for transient processes that can be treated as an itinerary pass through metastable
states, see [21,104].

The complexity and diversity of such processes, i.e., the complexity of the architecture of the heteroclinic network in
the cognitive phase space, depends on two factors: (i) the number of degrees of freedom, i.e., the number of variables
that form a model, and (ii) the number of metastable states with several unstable directions that coexist in a fixed region
of the control parameter space. This last feature depends on the kind of nonlinearity in the canonical model.

For incorporating a huge number of metastable states, the dynamical system does not need to be of very high order.
In several recent publications, four-dimensional hyperchaotic systems with versatile complex dynamical behavior have
been proposed [105,106]. In particular, in these papers a formal method has been suggested for constructing in a low-
dimensional phase space an infinite number of attractors that can be connected by separatrices (see Fig. 2.5). We illustrate
the transformation of a unique compact attractor into a multi-scroll set, extended along several directions, by an example
from [106] where the starting point is a system of 4th order, governed by the equations

ẋ1 = a x2 − a x1 − e x4
ẋ2 = bx1 − x2 − x1x3 − f x4
ẋ3 = x1x2 − c x3 (2.8)
ẋ4 = k x2x3 − d x4

At appropriate values of the parameters the attractor of the system is chaotic. The coordinate transformation x1 =

R sin y1, x2 = R sin y2, x3 = R sin y3, x4 = y4 leads to the set of equations

ẏ1 =
aR(sin y2 − sin y1) − ey4

R cos y1

ẏ2 =
R(b sin y1 − sin y2) − R2 sin y1 sin y3 − fy4

R cos y2

ẏ3 =
R sin y1 sin y2 − c sin y3

cos y3
(2.9)

ẏ4 = R2k sin y2 sin y3 − dy4

ince the transformed equations are invariant with respect to translations of y1, y2, y3 by multiples of 2π , the compact
haotic attractor of (2.8) turns, in terms of the variables of (2.9), into a multiscroll pattern. The phase portrait of the system
2.9) extends into the directions y1, y2, y3; the process of traveling along these involved spatial structures reminds Lévy
flight dynamics [107].

Following this logic, below we use two types of models: generalized Lotka–Volterra equations with minimal (quadratic)
nonlinearities, and the complex Ginzburg–Landau model that is characterized by a cubic nonlinearity. This approach is
especially useful for the design of nonlinear dynamical models that include both power (amplitude) and phase variables.
11
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Fig. 2.5. Multi-directionally extended multi-scroll attractors of the system (2.9) at a = 7, b = 50, c = 3, d = 10, e = 5, f = 5, k = 1.5.
Source: Adapted from [106] with the permission of Springer Nature.

.7. Limited information capacity and stability

There is a limitation in the processing of large simultaneous amounts of information streams that are received both
rom external stimuli and from the brain internal dynamics. The process of attention sequentially selects the most
mportant information for a specific cognitive task. The associated cognitive performance depends on the interaction
etween short-term working memory (WM)) and the attentional processes [108].
The capacity of sequential working memory has been estimated to be in the range of 5 ± 2 items [109]. From

he dynamical point of view, this limitation is not only related to the number of objects, which can be considered
s information chunks, but also by their associated complexity [110]. WM capacity is different among individuals, and
epends on factors such as age and health conditions [111–114]. The WM capacity dependence on both the environment
nd on the individual can be represented by the parameters of the SHC based model and, in particular, by the level of the
etwork inhibition (see Fig. 2.6 and [48,50]). Thus, a network can reliably keep the sequence of items based on the WLC
rinciple that supports their right order [115].

.8. Heteroclinic hubs. semantic memory retrieval and semantic control of information dynamics

We have to distinguish here between hubs in a brain neural network and hubs in the phase space of a functional
ognitive network. A brain hub can be identified as having connections to many network nodes (member of a rich club) and
12
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Fig. 2.6. Dependence of sequential memory capacity on the normalized level of network inhibition Φ(K ) ∼ ρij/ρii . Inlet: semi-logarithmic coordinates,
exponential border of stability with respect to interchange of elements order.
Source: Adapted with permission from [48].

is responsible for the cooperation of different specialized networks [116]. A cognitive heteroclinic hub is a metastable state
with a high-dimensional unstable manifold that consolidates different elementary heteroclinic networks in the cognitive
phase space.

Semantic hubs play a special role in semantic memory, which stores in a structured manner the facts, concepts and
meanings of verbal and nonverbal stimuli. Semantic brain networks encode such information and give form to coherent
concepts. Experimental work has provided evidence that physically the semantic hubs are located in the anterior temporal
lobe [117]. Rephrasing the famous term ‘‘thought as pattern’’ [118], we can say that the processes of thinking and
generation of thoughts are cases of the sequential dynamics of patterns. ‘‘Thoughts are not static . . . they emerge and
disappear as patterns in a constantly shifting dynamic system’’ [119]. ‘‘Thought arises as a low-dimensional, coherent
pattern in an extremely high-dimensional system called the human being coupled to its world’’ [120].

The control of semantic cognition requires the dynamical interaction between executive and semantic control and
the representation systems [121,122]. The semantic control performed by the prefrontal cortex modulates the dynamical
representation system that consists of the anterior temporal lobe and modality-specific regions that represent different
aspects of the semantic memory.

In particular, in social networks like jazz bands, different moduli are represented by different musicians. A characteristic
time course of the jazz improvisation in the band includes alternating segments when a musician is playing solo
while the rest of the band is giving him/her rhythmical support. This playing relies in many aspects on the feedback
from the body motion and the perception–action cycle [20]. After a while, another soloist comes to the foreground,
whereas the former one joins the rhythmic group, and so on. In contrast to the classical chamber music, neither the
order of the solo instruments nor the precise duration of the solo segments is rigidly prescribed; instead, dynamics is
governed by spontaneous feelings of the musicians. Heteroclinic hub networks can represent such collaboration, where,
parameterized by instantaneous contributions of different musicians, the jazz band evolves along a heteroclinic channel.
Collaboration is controlled by attention hub networks and the audio–visual interaction between the participants, see
Fig. 2.7. Norgaard and coauthors [123] hypothesized that musicians flexibly focus attention during improvisation by
storing the binding (concatenating) auditory and motor spatiotemporal patterns in the semantic memory. Interaction
of soloists through semantic memory patterns, in fact, is a synchronization process in teacher–learner dynamical systems
(see, for example, [124]).

Depending on the strength of the coupling between modules, both results are possible: mutual synchronization or
chaotization [91]. In this regard, an insightful discussion regarding the role of conceptual knowledge and cognitive control
in a model of social semantics is presented in [125]. In Section 4.4, we will discuss a model of cognitive interaction among
multiple musicians in the context of jazz improvisation.

3. Towards a dynamical theory of cognitive activity

3.1. Instabilities, divergence, convergence and attractors — global aspects.

The philosophical and psychological dimensions of consciousness have roots, especially related to linguistics, which can
be traced back to the beginning of the previous century. In the 40s, Kenneth Craik wrote ‘‘The Nature of Explanation’’ [127].
In his book, he first laid the foundation for the concept of mentality by stating that the mind forms models of reality
and uses them to predict similar events in the future. Craik was one of the pioneers of cognitive science, and his work
13
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Fig. 2.7. Representation of the audio–visual–musical and motor interactions in jazz playing under attentional control. Collaborative action of a set of
semantic memory moduli that represent the activities of different soloists in the band is achieved by sequential attention switching between them.
Heteroclinic networks describe such type of dynamics.
Source: Adapted from [126].

nfluenced many papers about mental modeling (see e.g. [128]) and also the creation of the psychological theories of
easoning and mental logic [129,130].

About half a century later, the cognitive scientist Bernard Baars published his seminal work ‘‘A cognitive theory of
onsciousness’’ [131]. The main idea of this theory is very attractive: consciousness has an integrative function realized
hrough a brain Global Workspace. This makes sense in a brain that is viewed as an integrated set of highly specialized
unctional networks. The Global Workspace Theory (GWT) has been generalized by Dehaene and coauthors [132]. A
umber of modern studies support the assumptions of GWT by showing the reorganization of the whole-brain functional
etwork during cognitive task performance (e.g. see [133]). These modern results showed that when the cognitive
emands were raised, the network modularity decreased, and from this change the behavioral performance was predicted.
s the task turned more demanding, the number of connector hubs grew, whereas the number of provincial hubs
ecreased. Neurophysiologists and physiologists are building a detailed map of the global neuronal workspace and
ddressing the role of many brain regions in a neuronal workspace model of consciousness. In fact, most current theories of
onsciousness involve distributed large-scale networks throughout the brain. The main ideas behind GWT [134], integrated
nformation theory [135], or global theories of brain neuroenergetics [136] have in common the view that consciousness
epends on widespread bilateral brain activity. Just recently, a new dimension of consciousness has emerged: scientists,
ncluding mathematicians, have become interested in the dynamical features and modeling of mental processes. An
ttempt to endow the information integration theory with the abstract mathematical formalism, to introduce for it the
pace–time continuous description and to develop a measure for the level of integrated information of the system, has
een undertaken in [137].
About a century ago, the Russian scientist Lev Vygotsky (1925) provided a definition of consciousness as an active

rocess responsible for the organization of cognitive human functions [138]. Since that time, several authors have
roposed different approaches to the understanding of consciousness, creativity and their interaction with autobiographic
emory, see e.g. [139–141]. In these views, consciousness deals with intrinsically generated mental processes integrated
ith perception. Building a dynamical theory of consciousness and cognition, in general, requires three parts:

(i) It is necessary to use all available information about the functional architecture of such key global brain networks
as episodic and semantic memory, working memory, default and attention networks, and their interaction through
brain hubs [35].

(ii) To formulate a mathematical model that represents sequential transient dynamics of such hierarchical brain network.
The model has to be:
(a) invariant with respect to the informational content of the performance cognitive function,
(b) robust against small noise, and reproducible under variations of initial conditions,
(c) sensitive to external or internal informational signals, and
(d) reflect the fact that any informational processing in the brain is characterized by finite capacity: finite number of
units (patterns), these patterns have their own time intervals that in fact can be described as an additional cognitive
modality.

(iii) To analyze hierarchical heteroclinic functional networks in the invariant model in order to find and characterize the
hubs that unify memory, attention, default and other heteroclinic networks (see Table 1).

.2. Sequences of events: time intervals, working memory and conscious dynamics

The core idea about the organization of events and timing of consciousness is related to the variability of sequential

rganization. The point is on the consciously perceived, temporally extended phenomena (such as the robustness of

14
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he processes and successions of events). Sequential temporal discreteness of cognitive dynamics is responsible for the
ompetitive balance between flexibility and stability, which is a key mechanism for goal-dependent thought generation
nd creativity. Recent imaging experiments have revealed how specific human brain areas construct networks responsible
or the memory of time. In particular, the hippocampus plays a central role in representing temporal contexts of arbitrary
ists of sequences of items, or meaningful, lifelike events. In general, the hippocampus, the posterior medial network, and
ther regions, e.g. the prefrontal cortex, appear to play complementary roles in the formation of temporal information for
he memory [142]. In [143] the authors support the hypothesis that time intervals allocate a working memory resource
hich varies with the amount of temporal information in a sequence. It is reasonable to view interval timing sequence as
n additional modality of sequential memory and to model it by a binding network. The generalization of a striatal beat
odel of interval timing shows how memories for multiple time intervals are represented by neural dynamics and can
lso be used to explain the mechanisms of resource allocation in the working memory [144].

. Dynamics of creativity

Creativity is just connecting things. When you ask creative people how they did something, they feel a little guilty because
they didn’t really do it, they just saw something. It seemed obvious to them after a while. That’s because they were able
to connect experiences they’ve had and synthesize new things.

Steve Jobs

.1. Dynamic metaphors as creativity modalities

Here we consider jumping out of the line, i.e., the emergence of metaphors — new dynamics. What do we need for
simple mathematical model of creativity? The goal is to find the bifurcations that correspond to sudden changes of

he information processes, caused by self-generation of new ideas and metaphors. It is reasonable to suggest that these
ransformations of dynamical systems are related to a sudden activation of new degrees of freedom. This can be a way
or the generation of metaphors.

In general, the dynamics of creativity results from the interaction of three cognitive modalities. These are: (i) the
rainstorming and daydreaming modality (the default network activity is related to it), (ii) the executive autobiographic
emory network (which gets activated when a person needs to focus attention on familiar goals) and (iii) the salience
etwork: detection of environmental stimuli and switching of attention between the executive and the default brain
etworks [145].
Semantic memory allows the inclusion of metaphors into the processes of creativity. A metaphor is a temporal modality

n the process of creativity binding. We call a process of connection in time between two unrelated or indirectly linked
hings – modalities – a dynamical metaphor. Existence of such metaphors is a key feature of the creativity process. It
an create strong images that can be used with great effect in thinking and in everyday communications, and thus
xert strong influence on many consciousness processes. As a rule, the final informational metaphorical image looks
bsolutely unusual and attracts attention (recall, for example, the graphics of Maurits Escher, or a canvas of Jackson
ollock). A dynamical metaphor is a new non-ordinary connection between previously unrelated modalities. This is
ritically important for creativity and requires attentional control. The flexible nature of the processes of metaphorical
xpression and metaphorical thinking is extensively discussed in [146].
Across a wide range of creative or artistic tasks, from composing poetry to music improvisation and sketching pictures,

MRI studies have mapped the brain activity. For example, in [147] it is suggested that the medial temporal lobe may
e central to the generation of novel ideas, and that the creative evaluation may extend beyond deliberate analytical
rocesses supported by executive brain regions to include more spontaneous evaluative processes, supported by default
nd limbic regions. In this way, creative thinking appears to recruit a unique configuration of neural processes that
ypically do not collaborate [145].

What are the biggest challenges of studying musical or poetic creativity from the dynamic neuroscience perspective?
t is not just music or poetry: being an elusive thing, the artistic creativity in general is one of the toughest topics to
tudy and to model. Creativity extends over of a very wide range of human activities, that often cannot be easily brought
ogether. By their very nature, art and creativity are concepts that lack real predictability. Thus, it is not really a natural
it to try to confine them to the constraints of a scientific experiment. Highly creative people are marked by flexible and
ariable network sequential dynamics. We believe that it is possible to formulate common dynamical principles for the
eneration of unexpected information. We provide here some examples of structured metaphorical sequences.
Shakespeare, a doubtless genius of metaphors, invented a special one right for our subject: ‘‘memory, the warder of

he brain’’ (Macbeth). A bright metaphor is usually a non-logical and non-expected leap from the original sequence to
nother one, possibly with the following return. Two decades ago, Clevenger and Edwards in [148] suggested to use
he distance in the semantic space for the quantitative description of metaphors, and for the encoding of metaphors

n expressive communication. Metaphor, in fact, is a kind of integrating tool for multidimensional (comprising several
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odalities) information through communication between its various levels which is very typical (together with chunking:
eparation into shorter information blocks) for poetry, lyrical music, songs and jazz language as well.
In general, the musical and poetic languages of the last century are characterized by: (1) associativity, (2) multiplicity

dimensionality), (3) codedness and (4) ambiguity of every pattern that is based on dynamic metaphors. We give here just
ne citation about jazz performance, in order to represent a background against which our dynamical hypotheses would
ook more fascinating. The famous jazzman Fred Hersch visualizes by words what he plays as ‘‘a kind of big playground
ith things jumping around on it, usually in terms of melodic movement: things going up this way, balanced by something
oing down that way’’. He saw ‘‘large masses of things moving along: one string of notes jumping up and down, stopping
nd twitching around. Music has a feeling of space around it; exist in space, these little mobiles of things. I like to think of
usic visually like that’’. The description of this dynamical process strongly reminds, as a metaphoric poetic text, the
ehavior of trajectories in the phase space of a low-dimensional dynamical system with complex behavior, in particular,
he emergence of a strange attractor. Semantic creativity involves flexibility and originality resulting for example in
rony and metaphors [149,150], where an association between the notions that are either distantly connected or seem
ompletely unrelated, may result in a meaningful linguistic construction. Hence, the semantic network of semantically
reative persons may be different than that of less creative people, allowing for more flexible and novel conceptual
ombinations during semantic processing (see [151]).
The ability of creative individuals to shift their mental focus and switch between different modes of thinking is well

ocumented [152]. These shifts and switches require dynamical interactions among functionally different brain networks,
ike (in the case of verbal creativity) the interaction between the cerebellum and the task control network. Sun and
oauthors also revealed in [152] a close relationship between verbal creativity and high variability of cortical networks
nvolved in spontaneous thought, attention and cognitive control. Psychiatrists know that when their patients imagine
uture events, the amount of episodic details depends on the kind of initial induction: a control induction without focus
n episodic retrieval produces less details than the episodic-specificity induction. Madore et al. have shown that an
pisodic-specificity induction enhances divergent creative thinking [153,154].
A theoretical approach to describe a metaphor is to relate it – no surprise in our context – to heteroclinic trajectories

f the cognitive dynamics. Consider a particular informational item, modeled by the saddle state of equilibrium with
high-dimensional unstable manifold (here ‘‘high’’ may start already with 2). In what direction will the mind wander

rom this item? Since the disturbances along the eigenvector which corresponds to the largest positive eigenvalue of the
acobian matrix grow at the fastest, the majority of orbits in the heteroclinic channel leaves the equilibrium along this
‘leading’’ direction in the phase space, and, hence, aims at the same particular next item (another metastable state of
quilibrium). This does not imply that heteroclinic pathways to other items/equilibria do not exist. However, transitions
o other items will be very rare. The arborescent network of heteroclinic connections among various items allows for a
uge amount of possible metaphors, but, under usual circumstances, only a minute proportion of these connections gets
ctivated.
We see here, at least, two possible mechanisms for the generation of metaphors. The local mechanism is restricted to

he neighborhood of just one equilibrium; for it, the local change of the properties of the phase flow suffices. The action
f inspiration (e.g. biochemically manifested through the release of the appropriate agents) could be reflected in changes
f the features of the metastable states. In particular, the formerly leading direction may lose its domination, whereas
ne of the previously non-generic (albeit existent) pathways may overtake its role: as long as the state of inspiration is
aintained, the heteroclinic channel directs the mind to a different item. For a sequence of metaphors of this kind, no new
eteroclinic trajectories should be created in the functional cognitive phase space; merely some of the existing non-used
nes should be activated, at a relatively low energetic cost. A much more violent (and probably a much less common)
lobal procedure would indeed pave new, hitherto non-existent, ways across the phase space, changing its structure and
nterconnecting the distant items; compared to the local action, this would require larger energetic resources.

It looks that the big poets intuitively master the art of shattering the generic system of connections between the items
n the semantic memory, in order to generate surprising associations. We can start right with Shakespeare and recall the
amous metaphor occurring to Romeo when, in the moonlight, Juliet enters the balcony. Instead of the worn out analogy
etween the female beauty and the moon, the metaphor takes a different turn:

‘‘It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief’’.

This goes far beyond the expected standard comparison: Juliet’s beauty outshines the moon. Or, as another example,
e take the famous verse ‘‘Il pleure dans mon coeur ’’ of Paul Verlaine where the poet looks at his rainy town. Of course,
big city can be compared to anything from an atom to a galaxy, but the most natural, ‘‘generic’’ connection would
robably relate a geographical item to another geographical item. In a non-generic poetic way, Verlaine discards the
bvious geographical relation (where the rainy Paris might be juxtaposed by e.g. the rainy London — see ‘‘The Tale of
wo Cities’’ by Charles Dickens) in favor of the different category: rainy Paris is linked to the rain in the weeping heart
f the poet.
16
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Fig. 4.1. Illustration of the inhibitory interaction between the elementary oscillatory modalities that combine cognitive resources like attention,
emory and emotion. In the model equations, such modalities are described as variables X0 , X1 and X2 . All edges correspond to inhibitory connections.

.2. Resonance interaction of oscillatory creativity modalities

Beaty and coauthors recently summarized experimental works examining cognitive mechanisms of network interac-
ions and correlational studies assessing network dynamics associated with individual creative abilities [155]. There are
hree cognitive processes related to network interactions during creative performance: goal-directed memory retrieval,
ognitive inhibition (see Section 1.3), and internally-focused attention. Studies using prediction modeling indicate that
unctional connectivity among networks, as recorded in experimental works – particularly the executive control and
efault networks – can reliably predict an individual’s creative thinking ability.
We emphasize that just the knowledge about functional connections of different networks in the brain is insufficient

or the description of the consciousness performance and its dependence on environment through perception. For this,
t is necessary to understand the dynamical activity of brain networks under the action of external signals: we have to
odel the non-autonomous cognitive dynamics. In the design of a reasonable dynamical model of creative activity, the

ollowing conditions should be fulfilled:

(i) each modality ought to possess the number of degrees of freedom that allows it to perform its own functions, like
working memory retrieval and regenerate the corresponding information items by using its own oscillations without
synchronization (1:1 synchronization of all three modalities restricts the diversity of functional activities);

(ii) phase coordination between the modalities must be the result of nonlinear resonance processes like combination
interaction satisfying the resonance relationship between different brain rhythms (see below).

The available evidence from cognitive and neuroscience research reveals, as we discussed, that several creative cog-
itive modalities, including constructive memory processes, build novel representations, internally directed by attention
o support active imagination, This evidence also confirms the relevance of executive control for the implementation of
he goal-directed memory, like episodic memory (hippocampal theta-oscillations, 4–8 Hz [156]) and attention (alpha-
hythm, 8–12 Hz [157]). Working together in rhythm coordination with default networks, anxious thinking and active
oncentration (beta-rhythm, 12–25 Hz [158]), these processes contribute to creative cognition. Event-related alpha-
and has been demonstrated over the frontal and posterior cortical sites during ideation associated to divergent
hinking [159,160]. It is reasonable to use this information when building a dynamical model for the generation of
etaphors.
The rhythm bands of each modality are determined by its own network architecture and intrinsic dynamics. We

onsider here a modality network hierarchy with two levels and assume that the basic rhythm of each modality is the
esult of inhibitory interaction between the elementary networks (see Fig. 4.1):

Each of these modalities is the result of the activity of different brain networks that interact with each other. In the
unctional cognitive phase space, this interaction is represented by a hierarchical heteroclinic network. A chaotic attractor
an emerge in the vicinity of the network in a creativity context. The low level of the hierarchy (inside the circles in the
epresentation of Fig. 4.1) features a number of elementary heteroclinic networks (motifs) that describe the dynamics of
nteraction between the basic information items. In different cases, this information may have different sense: a stanza
f a poem, an elementary block of a jazz melody, an elementary dance in choreography, etc.
As already mentioned, the ability of creative persons to move their mental focus and change between different thinking

odes relates creativity to the dynamical interactions between the brain networks. As a way to estimate the level
f creativity, a quantitative measure of semantic distance has been suggested (see [161]). Similar studies complement
tandard subjective measures and provide objective measures of the creative output. They also allow a more direct way
f addressing the role of semantic memory in creativity.
17
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In order to generate novel unexpected associations, cognition should be able to shuffle and combine the notions that
re stored in the memory. Here, the role of memory is twofold, both innovative and conservative: it not only supplies
nformation for the creative thought, but also biases the search process in the direction of the already known uses [162],
o that a certain cognitive control becomes necessary ‘‘in order to inhibit pre-potent response tendencies’’ [163].
In [141,164] the authors discuss the results of fMRI studies that should clarify which brain processes contribute to the

irth of new ideas. The measurements of brain activation and post-scan analyses deal with three kinds of tasks: generation
f new original uses of objects, recall of original object uses, and recall of common object uses. New and original ideas
enerate activation patterns, reminiscent of the recall of the old ideas: activation of bilateral parahippocampal regions.
his leads to the conjecture that the ‘‘construction of new ideas builds on similar processes like the reconstruction of
riginal ideas from episodic memory’’ [141]. Compared to the recall, generation of new objects requires higher activation
f a focused cluster in the left supramarginal gyrus.
The findings that we have today at our disposal suggest that cognitive processes combine two basic modes of thinking:

he automatic heuristic mode and the explicit thinking one. According to [165], the former is used for the information that
tays largely invariant over noticeable time intervals, whereas the latter one processes the information that is distinctly
ifferent from the previously learned patterns. Studies by fMRI methods in [165] on the effect of the serial order of ideas
n brain response disclosed the networks that support the explicit mode of thinking and serve for the transformation
f conventional cognitive patterns into new ones. These studies also confirm the relevance of the ability of the working
emory to rapidly shift between the thinking modes.
The study of metaphor production offers a new approach to the understanding on how humans generate new ideas.

everal neuroimaging studies have used different approaches to investigate the brain regions involved in different types
f creative cognition, such as insight problem solving, creative idea generation (i.e., divergent thinking), story generation,
nd visual problem solving (e.g. see [159,166–168]). Studies focusing on divergent thinking usually involve the protocol
f asking individuals to generate novel responses to open-ended problems.

.3. Chaotic transient dynamics in the Rabinovich–Fabrikant system

Poets, painters, and musicians have long known and reported that creativity unfolds when they are partaking in
ome kind of chaos. Although they definitely interpret the term ‘‘chaos’’ in its vernacular sense, high sensitivity and
npredictability of this state imply that its adequate mathematical modeling should bring about the kind of dynamics,
nown nowadays as deterministic chaos. As a dynamical phenomenon, chaos is represented in the phase space of the
orresponding dissipative dynamical system by the bounded set of trajectories, characterized by sensitive dependence
n the initial conditions: if several close initial conditions are chosen on the neighboring trajectories from this set, the
istances between them grow as exponential functions of time. This sensitivity precludes long-time forecasts for individual
rajectories. In the case when this set attracts all neighborhood trajectories, we deal with a chaotic attractor. Its birth from
he simpler forms of dynamics, as a result of the variation of the control parameters, can often be predicted from the
nalysis of the bifurcation sequences. It is natural to name this kind of chaos predictable or expected. In our opinion, such
haos can represent only some features of creative performance.
Consider a two-level hierarchical heteroclinic network (see Fig. 4.1). As one can see below, we analyze here the

ynamics of the slow – envelope – variables X0, X1, X2 that describe the creativity process on the upper level of the
etwork hierarchy. The equations for these variables can be derived, if we assume the complete synchronization of the
otif heteroclinic oscillations inside all specialized networks: the memory retrieval network, the default mode network

spontaneous thoughts generation) and the attention correction network.
In the shown hierarchy, two heteroclinic triangles or elementary motifs, X1 and X2, represent the activities of different

ognitive modalities: (i) episodic (and semantic) memory retrieval and (ii) spontaneous thought dynamics (evident
esponse inhibition). The network X0 represents the attention dynamics that controls the excitation of the modalities
1,2. In general, this network is a non-autonomous dynamical system with three information inputs: e.g. a jazz melody
0(t) that is the subject or carrier for the processing, i.e., modulation by the heteroclinic network, the emotional events

1(t) that are remembered better than the neutral events [169], and the emotion control E2(t) of the generation of
houghts [170,171].

We suppose that the autonomous dynamics of each motif – the heteroclinic triangle – is represented by a limit cycle
n the edge of stability, see Fig. 4.2. If X1,2 and X0 are close to the saddle-focus steady states, these modalities oscillate in
nearly harmonic fashion (panel A in Fig. 4.2):

Xj(t) ≈ Aj(t) ei(ωjt+ϕj) (4.1)

ith (some) frequencies ω0, ω1, and ω2. Since the saddle-focus is a collective state of equilibrium, small-scale oscillations
round it are collective as well: at every instant of time, amplitudes of all participating modes are of comparable order,
ll of them simultaneously present in the dynamics.
However, if such cycle is close to the heteroclinic contour, the motif oscillations will be strongly nonisochronous: long

pochs of slow motion across the neighborhoods of the saddle equilibria in the ‘‘corners’’ alternate with relatively fast
otions along the segments that connect the equilibria (panel B in Fig. 4.2). In contrast to collective oscillations from the
18
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Fig. 4.2. Rhythmic activity shown by a simple motif is strongly dependent on the parameters: the panel A shows quasiharmonic oscillations, whereas
n the panel B the limit cycle is close to the heteroclinic contour, therefore the oscillations are strongly nonisochronous.

Fig. 4.3. Multiple modal peak frequencies of persistent rhythms generated in local circuits of the neocortex in vitro.
Source: Adapted with permission from [172].

panel A, here the dynamics is sequential: during alternating long passages close to saddle equilibria, typically just one
mode features significant amplitude whereas the others are subjected to strong damping.

Whenever the autonomous oscillations of X1,2 weaken, the oscillation of X0 supports them with energy in the process
f the nonlinear interaction. Such energy exchange between the three modalities has to be mutual. This happens close to
he resonance (the so-called modulation instability):

2ω0 = ω1 + ω2 + ∆ω (4.2)

here ∆ω denotes the detuning from the exact condition of resonance for three frequencies.
This mechanism can explain the coordination of different brain rhythms. Experiments in vitro have shown an important

henomenon in this context: the autonomous part of the neocortex is able to generate a wide spectrum of coordinated
rain rhythms (see Fig. 4.3).
The complex Ginzburg–Landau (CGL) equation has been used for modeling cortical dynamics including neuronal

valanches and their relationship to brain rhythms [173–175]. Let us consider, in the framework of the CGL model, the
escription of three inhibitory oscillatory cognitive modalities:

Ẋ0 = 2σX1X2X∗

0 e
−i∆ωt

+ γX0 + iαX0(|X0|
2
+ 2|X1|

2
+ 2|X2|

2)

Ẋ1,2 = σX∗

2,1X
2
0 e

i∆ωt
− ν1,2X1,2 + iαX1,2(2|X0|

2
+ |X1,2|

2
+ 2|X2,1|

2)
(4.3)

ext, for simplicity, we suppose that the damping coefficients ν1,2 coincide: ν1,2 = ν. In this case,

d
dt

(
|X1|

2
− |X2|

2)
= −2ν

(
|X1|

2
− |X2|

2) (4.4)

o that the intensity of the dissipative modes becomes, in the course of time, practically equal. Then, after the appropriate
escaling (see [176] for details) we obtain for the new rescaled variables x(t), y(t) and z(t) the three-dimensional
19
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Fig. 4.4. Rabinovich–Fabrikant attractor at parameter values γ = 0.1 and ν = 0.2715.

abinovich–Fabrikant (RF) model:

ẋ = y(z − 1 + x2) + γ x
ẏ = x(3z + 1 − x2) + γ y (4.5)
ż = −2z(ν + xy)

where

x =

(
4
⏐⏐⏐ α

∆ω
X0

⏐⏐⏐2)1/2

cosΦ

y =

(
4
⏐⏐⏐ α

∆ω
X0

⏐⏐⏐2)1/2

sinΦ

z = 2
⏐⏐⏐ α

∆ω
X1

⏐⏐⏐2 (4.6)

2Φ =

(
∆ωt + 2 arg

X0

X1

)
signα

There are different mathematical images of creativity, depending on the character of the creativity goal. It is reasonable
o separate at least two types of creativity: (i) the emergence of the process, i.e. a new type of dynamics that is
haracterized by infinitely long duration and can be recalled as a process in time: music, poetry, dance etc.; and (ii)
he emergence through a new complex transient sequential process of an unusual informational pattern like the already
entioned examples of Pollock canvasses and Escher architecture images, or unusual culinary dishes. An example of image
f the first type of creativity is presented in Fig. 4.4: this is a strange attractor. The image of the second kind of creativity
s a new stable informational pattern, i.e., a stable steady state. The complexity of such informational pattern depends on
he length of the transient sequence that ends at the corresponding steady state (see below Eqs. (4.9)–(4.10), and [177]).
he RF model has demonstrated creativity images of both types (see Fig. 4.5).
The set of Eqs. (4.5) illustrates the emergence of chaotic sets in a system with resonance interaction of the modes [176,

78]. The onset of chaos in this model, as a result of the parameter variation, is difficult to predict because of multistability
nd transient chaoticity phenomena in the phase space. In the context of creativity, it should be mentioned that when
he signal, produced by the orbit wandering on this particular chaotic attractor, is mapped onto the sounds of drums and
ercussion, a unique ‘‘fractal’’ music is generated (https://www.youtube.com/watch?v=kh6ZLvpWr5k). This system, with
ts third-order nonlinearities, displays ‘‘virtual saddles’’ in addition to chaotic sets with different shapes, hidden chaotic
ttractors and hidden transient chaotic orbits [178–180], see Fig. 4.4.
Like many other complex dynamical systems, the models of cognitive activity often feature multistability (see

.g. [181]): coexisting attractors. In such situations, the choice of the final state depends on the initial conditions, and it is
ommonly highly sensitive towards noise and fluctuations of the system parameters. Recent studies relate multistability
o occurrence of unpredictable chaotic transients and so-called ‘‘hidden attractors’’ [179,180]. To understand the global
ynamics of such systems one has to identify the possible transient chaotic sets, the attractors and their basins. Numerical
20
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Fig. 4.5. An illustration of a hidden chaotic attractor. (a, b) The hidden attractor is depicted here in green with trajectories diverging to infinity and
others attracted by the stable equilibria. (c, d) illustration of other trajectories starting from different vicinities.
Source: Adapted from [179] with the permission of Springer Nature.

localization of hidden attractors is often difficult, since they do not evolve from simple states of equilibrium through
transparent bifurcation routes.

4.4. Sequential creativity dynamics and emotion

It is generally accepted that emotion can be defined as responses to events that support and adapt the way we think
and behave [182]. Emotions include a number of components like the cognitive appraisal of events, motor expression,
21
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Fig. 4.6. Collaborative creativity of a set of soloists (hexagon network) is achieved by sequential switching between them (circles). In this model the
soloists control the sequence of creativity ideas within the initial state demand of other within a group. Such dynamics maximize the creativity of
the soloist. The common interaction among soloists uses attention resources and their auditory and visual information from each other (red arrows),
and builds their common goal in the creativity process, see also Fig. 2.7.

feeling yourself and others. Positive emotions (joy, satisfaction, pride) augment creativity during idea generation and
increase flexibility of conceptual combination, while negative emotions reduce the flexibility of information available for
the creative process and the chance for generation of new ideas [183].

Let us come back to the example of jazz soloist collaboration and consider a model of six-soloist activity. The
collaborative creativity of the set of soloists is achieved by the sequential switching of their playing in concert (see Fig. 4.6).

The neural substrates that underlie spontaneous musical performance have been analyzed in [184]. Improvisation of
professional jazz pianists playing on a specially constructed keyboard was investigated by means of fMRI. The overall
spatial pattern of activity during improvisation was found to be incoherent: focal activation of the medial prefrontal
cortex coexisted with deactivation of the lateral orbital region as well as of the rear prefrontal region. This decentralized
pattern, apparently inherent for the spontaneous improvisation, was interpreted in [184] as development of internally
motivated stimulus-independent behavior in the absence of conscious control of the performance.

To illustrate the main point about spontaneous chaotic playing with different ideas, we do not take into account
here another aspect of the creativity process: emotion dynamics. Usually all partner jazzmen play up to a soloist. We
ignored this complication because we believe that it contributes little to our model of creativity while complicating the
corresponding dynamical model. Thus, we omit direct connections between players.

An appropriate simplified model for the description of the creativity variables xmi depending on the attention control
network can be written on the base of the canonic equation (2.3) in the form

τm
i

dxmi
dt

= xmi

⎡⎣σm
i (Rm, Sm, Cm) −

Km∑
j=1

ρm
ij xmj

⎤⎦ (4.7)

Here τm characterizes the timescale of the switching between the ideas, S is the vector of sensory inputs, σm
i (. . .) ≥ 0,

m
ij ≥ 0 is the connection matrix between the competitive ideas used by the mth soloist. Results of the numerical
imulation of this model are displayed in Figs. 4.7 and 4.8.
Fig. 4.7 presents the time series corresponding to an independent soloist improvisation. For simplicity, four creativity

deas out of six are plotted. Fig. 4.8 corresponds to the same player interacting with the other musicians as a band.
To characterize quantitatively the value of the information generated by the creativity process, we calculated the

yapunov dimension for each network using the Kaplan–Yorke formula:

DKY = j +
j∑ λk

|λ |
(4.8)
k=1 j+1
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Fig. 4.7. Modeling of individual soloist improvisation by a heteroclinic network. A: a jazzman independently plays (DKY = 4.05). B: activity of the
ame player is sequentially switching with the other players of the band under the attentional network modulation; in this case DKY = 6.01. Different
olors represent the temporal patterns corresponding to different creativity.
ource: Adapted with permission from [50].

Fig. 4.8. Analysis of creativity in the sequential patterns produced by a model of the interaction between members of the music band sketched in
Fig. 4.6. Each member of the band uses his/her own memory about the sequence of the preceding improvisation.
Source: Adapted with permission from [50].

where λ1 ≥ · · · ≥ λn are the Lyapunov characteristic exponents, and j is the largest integer for which the sum λ1+· · ·+λj
is positive.

4.5. Surprise and instability

When we hear a good poem and start to think about it, we deal, like in real life, with an unpredictable sequence of
cognitive episodes that is distinct from the cognition of non-creative content. Reading or reciting a poem is a sequential
dynamical process that at the first instances is unpredictable. Interpretation uncertainty can be characterized by the
Kolmogorov–Sinai entropy or information dimension. The application of the formulated above dynamical paradigm to the
poetry processes, is, in fact, a development of the well-known idea that the creation of poems is a sequential variation of
the semantic constructions around the preliminary theme. In particular, the poet Joseph Brodsky in his Nobel lecture said
‘‘One who writes a poem writes it because the language prompts, or simply dictates, the next line. Beginning a poem, the poet
as a rule doesn’t know the way it’s going to come out, and at times he is very surprised by the way it turns out, since often it
turns out better than he expected, often his thought carries further than he reckoned. And that is the moment when the future
of language invades its present’’. There are three mental modes: analytical, intuitive, and the mode that was known ‘‘to the
Biblical prophets’’ (in our understanding — instabilities), that participate in the dynamical process of the poem creation;
these modes have to be bound. As an example of semantic unpredictability we quote here two stanzas from the famous
poem of Thomas Eliot:

I have seen them riding seaward on the waves
Combing the white hair of the waves blown back
When the wind blows the water white and black.

We have lingered in the chambers of the sea
By sea-girls wreathed with seaweed red and brown
Till human voices wake us, and we drown.

(T. Eliot, 1920, The Love Song of Alfred Prufrock)
23
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What does the flow of the poem mean? One can imagine several different poetically reasonable branches which can
icely continue any line in different ways. This illustrates variability and unpredictability of the poetic process. Especially
urprising for the reader is the end of the poem. Is this amenable to mathematical modeling?
The canonical model that we have built above is applicable for the description of cognitive dynamics of poetry creation.

he typical solution of that model is a sequence of metastable states that represent new concepts or images arising during
he writing through association between the modes of semantic network. This means that, in our model, the process of
he poem creation is represented in the phase space of the model by a one-directional chain of metastable states (see also
ig. 1.2A). A metastable state is triggered to the next one by a structural analogy, semantic similarity, polysemy, etc. On
ome steps, the chain of metastable states becomes unstable and the system jumps to another branch of the main tree,
andomly choosing between the new modes of the semantic network. Such uncertainty is inherent for a mathematical
epresentation of the creativity process. In the framework of the model discussed above, we can analyze the influence of
he information structuralization in the form of a sequence of chunks on the stability of hierarchical creativity process.
reative cognitive ability is correlated with the dynamic reorganization of resting-state functional brain networks. In this
ontext, big data fMRI analysis has established a relation between creativity and the temporal variability of cortical and
erebellar regions during the resting state. The link between variability and creativity is supported by the hypothesis of
andomness in the transition from one network state to another [152].

.6. Dimension of cognitive information flow

One of the most constructive features of consciousness and creativity is the brain information integration process [185].
t is implemented in the brain by the binding mechanism. Binding is a nonlinear dynamical phenomenon that transiently,
.e., sequentially in space and time, unifies the information carried by the flows of different modalities. We name it the
onsciousness Information Flow (CIF).
In the functional cognitive phase space the binding dynamics of the flow is represented by phase trajectories disposed

n the vicinity of the binding heteroclinic network that is formed by metastable states – the hubs – with multidimensional
nstable manifolds. These trajectories can be viewed as elements of many-dimensional CIF. The transient dynamics
epresented by such channels is robust and reproducible.

To quantitatively characterize the complexity of the CIF, let us introduce a new function that we call the local
nformation Flow Dimension, as

DIF(L) =

L∑
j

∆DIF(I) (4.9)

here

∆DIF(I) = Jl +
Jl∑

j=1

λl
j

|λl
Jl+1|

(4.10)

Here L is the total number of metastable states (saddles) visited by the system until the time tL, l is the index of the
addle along the channel, λl

j are the ordered (λl
1 ≥ · · · ≥ λl

n) characteristic Lyapunov exponents at the saddle l, whereas
he integer Jl is defined by the conditions:

Jl∑
j=1

λl
j > 0,

Jl+1∑
j=1

λl
j < 0 (4.11)

In the case when the unstable manifolds of all saddles along the heteroclinic channel are one-dimensional,

DIF(L) =

L∑
l

(
1 +

1
νl

)
(4.12)

here νl is the saddle value (2.7) of the saddle l. In this situation all Jl = 1, and the ratio of positive Lyapunov exponents
o the negative ones is simply 1/νl (recall that for the channel stability the product of all saddle values in the channel has
to be larger than 1).

We illustrate the usefulness of the DIF for the quantitative description by the example of heteroclinic binding problem.
In the heteroclinic skeleton, sketched in the second row of Table 1, each saddle along the ‘‘binding heteroclinic channel’’
has a two-dimensional unstable manifold. This implies Jl = 2 for all l. Thereby, the above estimation of the DIF indicates
hat the flow capacity for a binding channel is at least twice as large as the DIF of three independent channels. This
esult can be interpreted in the following way: the information flow capacity characterizes the complexity level of
he trajectories within a network of heteroclinic channels. We can hypothesize that such complexity supports fast and
ersatile mechanisms of encoding the information about a subject. It seems promising to relate the function DIF with the
hannon information and the capacity dimension of chaotic sets, see [186]. We are sure that this will be assessed in the
ear future.
24



M.I. Rabinovich, M.A. Zaks and P. Varona Physics Reports 883 (2020) 1–32

5

t
m
s
s
b

5

p
a
t
t
w

o
i
i
t
m

m
I
d
i
c
d

5

o

F
c
m
e
c
e
n
r
h
t
i

5

s
a
s
a
g

. Conclusions and outlook

Here we have considered consciousness as a transient multi-modal spatio-temporal process in the brain. This process is
he result of integrated activity of many functionally specialized global brain networks that represent different cognitive
odalities like autobiographic memory, attention, thought generation, sensory perception and others. Mathematically
uch transient dynamics can be represented by a network of heteroclinic trajectories in the functional cognitive phase
pace. The image of the life of consciousness is a phase portrait of the dynamical model that mimics the activity of the
rain.

.1. Timing in conscious dynamics. multimodality binding. synchronization and entrainment

As we already discussed, consciousness is a robust sequential process; its purpose is to recognize the present and to
redict the future. This transient integrating process is based on several cognitive modalities. Among them, the key ones
re: the autobiographic memory — including episodic and semantic memories, the attention control, and self-awareness of
he generation of thoughts. All these modalities themselves are sequences of events localized in time. The robust retrieval
hat we discussed on the example of one modality (working memory) means the reproducibility of the order of the items
ithin the sequence. This robustness is possible, provided that the sequence is short enough [48].
It is reasonable to hypothesize that the robustness of a cognitive multimodal sequence is determined by the stability

f the binding sequence. The specifics of such problem is related to the fact that one modality is a sequence of time
ntervals. This modality is often metaphorically named as ‘‘ebb and flow’’ of the tide in our thoughts, or the consciousness
n general [187]. Since the temporal organization of events into chunks is, in general, non homogeneous, it is necessary
o analyze the dynamical control of the time intervals. In the simplest cases it can be mutual synchronization or, even
ore efficient in the multimodality cases, the entrainment.
Jazz improvisation with variable rhythms, and recital of poems with different cadence are well known examples of

emory retrieval with flexible variation of the time intervals between the neighboring cognitive and behavioral events.
n contrast to the rhythmic timing of intervals, when the ratio of the chunk duration to the interval between the chunks
oes not depend on local time [1,188], the description of conscious activity with variable time intervals between the events
s more complex and needs new approaches. An interesting example is the occurrence of switching between multimodal
oordination patterns and of synchronization between them, which was observed in multimodal coordination behavioral
ynamics [189].

.2. Emotional and attention modulation of sequential interval timing

What we hear in a musical concert seems to be determined by the sound reaching our ears. However it also depends
n our memories about the sounds that we have heard before.
In fact, we feel a multimodal mixture of the original arrangement of the music with the current representation.

or example, one of such modalities can be jazz improvisation with sequential interval timing. In principle, a listener
an control the current temporal performance by emotion and attention that are strongly interconnected with working
emory [190]. A similar statement refers to the emotion. The corresponding neuropsychological mechanism is known:
xperiments have provided evidence that when the amygdala is connected with the hippocampus and the prefrontal
ortex, i.e., when they are forming a joint network, together they play a key role in retrieving emotionally experienced
vents [191,192]. Fayolle and coauthors [193] also showed that the emotion of fear speeds up the internal clock. It is
ow well understood that biological internal clocks are modulated by attention and arousal. Preliminary adjustment to a
hythmic external signal (pacing) is also known to have a role in the setup of timing intervals [194]. A dynamical model can
elp to address the hypothesis that observing emotional facial expressions distorts subjective time perception through
he interaction, e.g., of the neural network responsible for the processing of facial expressions with the brain network
nvolved in timing [195]. In general, the mutual dynamics of such networks can be quasiperiodic or chaotic, see also [52].

.3. The socio-brain. temporal coordination between brains

Challenging problems about the timing of consciousness dynamics evidently have to be formulated for the case of
ocial cognitive networks. Certain social groups, like the orchestras and the sport teams, engage in activities that demand
high level of time coordination between the participants. Success in some of these activities (classical ensemble music,
ynchronous swimming) assumes rather tight timing among the group members; in other situations (jazz bands, cycling
nd rowing teams) an individual, albeit keeping some freedom in her/his pace, remains restricted by the timing of the
roup as a whole. How is the adjustment implemented within the group?
Understandably, for the success of the group action, the timescales of relevant processes inside the brains of the

participating individuals should be adjusted to the characteristic times of the interaction between the group members.
Social modality affects time perception, so that the subjective durations of time intervals become altered, changing in their
turn the feeling of being ‘‘in’’ or ‘‘out’’ of synchronization. The authors of [196] suggest that the core of these reciprocal
interactions is an ‘‘internal clock’’ involving subcortical orchestrated oscillations that represent temporal information, such
25



M.I. Rabinovich, M.A. Zaks and P. Varona Physics Reports 883 (2020) 1–32

a
T
r
o

5

c
o
m
P
i

c
w
s
c
T
i

i
s
a
t

e
t

i
i

T
t

d
t
s
d
e
t
p

o
a
t
c
r
t
o
f

D

a

A

B
a
A

s duration and rhythm, as well as insular projections linking temporal information with internal and external experiences.
he timing of social relative to nonsocial stimuli changes the interconnection in corresponding networks. Together, these
eciprocal pathways may enable the exchange and respective modulation of temporal and social computations. In our
pinion, the analysis of temporal binding dynamics in a social group is a promising direction.

.4. From neuroscience to robotics, artificial intelligence and biomedical applications

The formalism described in this paper has applications beyond neuroscience research. Classic robotic paradigms typi-
ally use rule-based decision that leaves little space for creativity or allowing just programmed creativity. The perspective
f seeing the behavior as a succession of robust sequential interactions provides the opportunity to employ the described
odels in order to drive representation of cognitive interactions into the realm of robotics and artificial intelligence.
revious work has shown that winnerless competition and heteroclinic networks can be used in robotics, robot–human
nteraction or autonomous artificial agent research [197–201], including also the realm of machine learning [96].

Today we are witnessing a shift in our human-focused social paradigm towards a greater involvement of artificial
ognitive agents in our everyday life. The collaborative scenarios between humans and robots become more frequent and
ill have a deeper influence on our daily routines. The mutual interaction between people and robots is a source of several
pecific problems related to the quality of continuously changing in time (transient) exchange of information between the
ollaborators. The main question in this context is: can we trust the robot‘s information to use it as it is, and vice versa?
he on-line decision to this question needs the attentive evaluation of the current situation against the information kept
n episodic and semantic memory. Such activity is an example of a conscious robot everyday problem.

Now conscious robotic cognition calls for memory information integration including language and sensor/motor
ntegration. In fact, all our discussion above is based on the idea that consciousness is an integrated dynamics of
patiotemporal information patterns from outside and inside the brain. It looks very natural to use the same modeling
pproach – sequential heteroclinic dynamics – for the description and development of the robotic consciousness in order
o organize the collaboration between sentient robots and humans.

A major challenge for such collaboration are the automatic correlation of languages and the denoted sensorimotoric
xperiences, commonly known as the Semantic Gap problem. The discussed ‘‘heteroclinic universality’’ can be an efficient
ool for solving this problem, as it allows hierarchical sequence binding and coordination.

Modern neuroscience provides new evidence on the structure of semantic memory, and points to the fact that semantic
nformation is multisensory, multimodal and distributed. In the dynamical language, it means that the process of binding
n the ‘‘robotic cognition’’ has to be multimodal and deeply anchored in time.

The coordination of timing clearly plays an important role in the efficiency of human–robot collaboration processes.
he above discussed heteroclinic synchronization phenomenon offers a possible mechanism for joint ‘‘human–robot mind’’
emporal coordination and control.

The description of robust sequences related to creativity neural processes and the identification of the corresponding
ynamics and bifurcations can also lead to novel approaches in the context of biomedical research and clinical applica-
ions [52,54,202]. The dynamical characterization of resting state and stimulus-induced cognitive neural activity has been
uggested for the design novel biomarkers of brain diseases [18,203,204]. Recently, the characterization of sequential brain
ynamics has also been proposed for the analysis of techniques that use rhythmic stimulation such as steady state visually
voked potentials and intracranial stimulation in the context of different research and biomedical applications [205]. All
hese works point out the need and potential wide impact of the theoretical framework and the models discussed in this
aper.
As we discussed above, nature uses universal dynamical principles such as transitivity, robustness, and minimization

f resources for realization of many cognitive functions: perception, reinforcement memory, decision making, creativity,
nd consciousness. The understanding and prediction of transient information processes in the human brain and
heir dynamical images are challenging and attractive for physicists, mathematicians, psychiatrists, neurophysiologists,
omputer scientists, and medical doctors. Today these scientific issues are also addressed within the context of AI and
obotics. Of course, it is hardly possible to address the vast array of problems in the framework of a single review, and
he material that we presented here is just the tip of an iceberg. We are confident that such topics as nonlinear dynamics
f social human–robots groups, cooperation of the brain with AI in decision making, and the creation of a joint balanced
uture will be the subject of many new efforts in forthcoming years.
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