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Abstract: We have studied the role of external current stimuli in a four-dimensional
Hodgkin-Huxley-type model of cold receptor in this paper. Firstly, we researched
its firing patterns from direct current (DC) and alternating current (AC) stim-
uli. Under different values of DC stimulus intensity, interspike intervals (ISIs) with
period-doubling bifurcation phenomena appeared. Second, research has shown that
neurons are extremely sensitive to changes in the frequency and amplitude of the
current used to stimulate them. As the stimulus frequency increased, discharge
rhythms emerged ranging from burst firing to chaotic firing and spiking firing.
Meanwhile, various phase-locking patterns have been studied in this paper, such as
p:1(p>1),1:9q(¢g>1),2:q(¢>1)and p:q (p,qg > 1), etc. Finally, based on
the fast-slow dynamics analysis, codimension-two bifurcation analysis of the fast
subsystem was performed in the parameter (as,., B)-plane. We mainly investigated
cusp bifurcation, fold-Hopf bifurcation, Bogdanov-Takens bifurcation and general-
ized Hopf bifurcation. These results revealed the effect of external current stimuli
on the neuronal discharge rhythm and were instructive for further understanding
the dynamical properties and mechanisms of the Huber-Braun model.

Key words: firing patterns, phase-locking, interspike intervals (ISIs), firing rate,
fast-slow dynamics analysis, Huber-Braun model

Received: June 26, 2014 DOTI: 10.14311/NNW.2015.25.032
Revised and accepted: May 30, 2015

1. Introduction

External current stimuli can change the dynamics of nonlinear systems qualita-
tively. And a lot of experiment data indicates that a neuron has a tendency to
burst depending on many internal and external factors, such as all kinds of ion
channels, ion concentration, depolarizing currents and membrane capacitance, etc.
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Neurons can produce electric signals which carry a mass of important adjusting
and controlling information if they are stimulated [11]. Normally the dynamics of
these systems are a little change when the parameters are slightly modified, but
the situation will be a totally different at a critical point. The system would be
transformed from a periodic pattern to chaotic pattern or from one periodic pattern
to another periodic pattern [15, 16, 18, 21].

Here we study the Huber-Braun cold receptor model which was developed in
1998. Through use of a simplified Hodgkin-Huxley-type method, the model consists
of two kinds of simplified sodium and potassium currents representing subthreshold
oscillations and spike generation, respectively. The effect of Gaussian white noise
and temperature had been deeply researched by Braun et al. According to the
influence of temperature, there are two different types of transitions from tonic
firing to bursting [2]. Omne appears in the high temperature region: when the
temperature decreases, the dynamical properties of the system have no qualitative
change. Another appears in the low temperature region: when the temperature
increases, firing patterns transform from tonic firing to bursting. Their analyses
demonstrate that temperature influences the slow, subthreshold currents in two
different ways: when the temperature decreases, on the one hand, the wavelength
increases, on the other hand, the subthreshold value of the oscillation amplitude
decreases [7, 9]. A special diversity between current and conductance noise have
been discovered in particular situations [6, 8, 14]. However, in most cases, this
difference is negligible.

The analogous data analysis reveals that adding external current stimuli can
broaden the dynamical properties of the system to a large extent. Usually, the
external current is added in the current balance equation to tune the model to
different kinetic states. Previous numerical research on the firing patterns of Huber-
Braun cold receptor model under DC stimulus [17] showed that the model could
display a rich variety of firing types, in addition, ISI sequences and the return map
of ISIs are very diverse [4, 5, 10, 11, 12, 13, 20]. Furthermore, on this basis, we
study the cosinusoidal modulation of the current injected into the model, which
can also transform it from periodic firing to bursting.

In this paper, we focus on the properties of the firing patterns under DC and
AC stimuli. Besides we also analyze the neuronal average firing rate, phase-locking
rhythms, the ISIs bifurcation diagrams, and the return map of ISIs. With the sup-
port of numerical simulation and nonlinear dynamical theory, many firing patterns
are observed and analyzed. Moreover, under external cosinusoidal stimulus, a lot
of phase-locking patterns emerge. At last, codimension-two bifurcation analysis
is utilized to better understand the combined influences of the slow repolarizing
variable ag. and the DC stimulus intensity B on the dynamical behavior of the
Huber-Braun model.

The paper is constituted as follows. In Section 2, we describe a simplified
Hodgkin-Huxley type model of a cold receptor and the corresponding numerical
simulation method. In Section 3, the dynamical behavior of this model stimulated
by external electrical stimuli is investigated. Section 4 shows the codimension-
two bifurcation analysis of the fast subsystem in the control parameter (as., B)-
plane based on the fast-slow dynamics analysis. Finally, conclusions are given in
Section 5.
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2. Model and method

We apply a simplified Hodgkin-Huxley-type method as previously depicted [1, 2, 3].
In short, this model is composed of two minimal sets of depolarizing and repolariz-
ing currents which are activated at different voltage levels and with different delays.
It is a single compartment model with the following membrane equation:

dv

Mot

where V' is the membrane voltage and Cy; is the membrane capacitance. The

leakage current is given by ¢;(V — V}); I, represents the fast depolarizing spike-

current Ing; I, represents the fast repolarizing spike-current Ix; I stands for the

slow depolarizing current In,p; Is stands for the slow repolarizing current I (cq);
Iyt is the external current.

The voltage-dependent currents are computed using the following equations
(i =d,r, sd,sr):

= _gl(V_W)_Id_IT_Isd_Isr_Iext7 (1)

Ii pglal(v - ‘/2)77’ = da T Sd7 ST, (2)
1
Qjco =
1+ exp(—s;(V — Vo))

day _ ¢(arw - ar) (4)

,i=d,r,sd, (3)

dt T, ’
dasd _ (b(afsdoo - asd) (5)
dt Tsd ’

where V; is the equilibrium potential, g; is the maximal conductances. The quanti-

ties Vp; and s; are half-activation potentials and slopes of the steady-state activation

curves, respectively. 7; is the voltage independent activation time-constant.
Instantaneous activation of the fast depolarizing current is represented by

aqd = Adoo- (6)

The slow repolarizing current ag, is coupled directly to the slow depolarizing

current I;q by means of

dag, _ ¢(_nlsd - kas,.) (7)

dt Ter

where 7 is a coupling constant and k is a relaxation factor.

Temperature dependencies are described by the scaling parameters and for the
maximum conductances and the time constants, respectively (T": temperature, Tp:
reference temperature):

T—Tg

T-Ty
p=13"1", ¢$=30 10", (8)

The external current stimulus is implemented in the following form:

Ioxt = B + Acos(2m ft), 9)

when A = 0, the external current stimulus Iy is a DC form, while B = 0 makes
the It a AC form.
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Parameter Value Parameter Value Parameter Value

VilmV]  —60 gi[ns] 0.1 Cwm[pF) 1.0
Va[mV] 50 ga[ns] 0.91 Voa[mV] —25
Vi[mV] =90 gr[ns] 1.21 Vor[mV] —25
Vsa[mV] 50 gsa[ns] 0.15 Vosa[mV] —40
Vi lmV] =90  gulns] 024 T[°C) 25
Tsd[ms] 80 Tsr[ms] 160 Tr[ms] 16
sp 0.25 Ssd 0.09 Sd 0.25
n 0.012 k 0.17

Tab. I Parameter values for the Huber-Braun cold receptor model.

The average firing rate of the neuron is defined as

N

)
Tinteg

fr=

(10)

where N is the number of spikes and Tineg is the integration time which the neuron
fires during. If the neuron is stimulated by periodic input with a frequency f, we
adopt Tinteg as an integer product of the time period 1/f.

Some parameters are given in Tab. I. The calculation of this model was pro-
gramed in Python by using a fourth-order Runge-Kutta algorithm. One-parameter
bifurcation diagrams were performed using XPPAUT software, and codimension-
two bifurcation diagram was computed using MATCONT software. Other dia-
grams were drawn using an open source library in Python named Matplotlib. In
our simulation, we set the initial value of membrane potential as —60 [mV], while
initial values of other three variables were set as the values of the steady-state
activation. To avoid the influence of initial values, we deliberately discarded the
values 020 [s], and analyzed the action potential values during 20-40 [s]. In this
paper, we didn’t focus on the effect of temperature on the model, so we made the
temperature remain stable; that is, T' = Ty. The values of membrane potential
were calculated with a time step of 0.1 [ms]; bifurcation diagrams with a time
integration of 0.05 [ms]. Simulated results have been repeatedly verified.

3. Simulation results

3.1 Variation of firing patterns under DC stimulus

In neurons, DC stimulus could be considered as a constant stimulus or a compound
synaptic current. In this part, we study the role of DC stimulus intensity on
neuronal firing patterns. Studies have shown that phase diagrams can be used
to describe the periodic number of the corresponding firing patterns [20]. We
draw the phase diagram of the slow depolarizing variable a5y with respect to the
neuronal action potentials. As the value of DC stimulus increases, we get the typical
discharge sequences as shown in Fig. 1. In Fig. A we can see, the firing patterns
present a period-1 pattern when B = 0, as shown in [17]. As B increases to 0.12, the
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Fig. 1 Neuronal action potentials and the corresponding firing periods under dif-
ferent values of B. From A-F, the value of B is 0,0.12,0.4,0.8,1.2, and 1.25 [nA],
respectively. In each diagram, the upper part represents the neuronal action poten-
tials, and the lower part indicates the corresponding firing number of the model.
Different values of B can induce different firing patterns and firing numbers.

neuron fires a period-2 pattern, while a period-4 pattern emerges when B increases
to 0.1293. Due to this change in periodic number from one period to two and then
from two to four periods, it is apparent that this is a period-doubling bifurcation
phenomenon, which can also be observed in the ISIs bifurcation diagram of Fig. 2a.
After the period-doubling cascade, the neuron model enters into a chaotic firing
pattern and multi-period firing pattern alternately. After that, a period-4 firing
pattern appears when B = 0.8, when B continues to increase to 1.0, there is a
period-3 pattern, and the neuron model displays a period-2 when B = 1.2. Finally,
the neuron model reaches a resting state after first producing a period-1 firing
pattern.

The particular transition modes between these firing patterns with the linear
increase of DC stimulus intensity is illustrated in Fig. 2a, which can obviously show
how these firing patterns transform from one to another. We also give the variation
in neuronal average firing rate as a function of DC stimulus intensity in Fig. 2b,
which indicates that for a larger DC stimulus intensity, the average firing rate is
somewhat lower. That is to say, the average firing rate of the neuron model can be
modulated by external DC stimulus. Furthermore, the average firing rate changes
irregularly in chaotic areas and decreases suddenly at the points when the number
of period changes.
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Fig. 2 Interspike intervals (ISIs) and the average firing rate as B changes. a:
The ISIs bifurcation diagram; b: Firing Rate. The red horizontal line in diagram
b represents the values of firing rate without external current stimuli.

3.2 Variation of firing patterns under AC stimulus
3.2.1 Response of the neuron to cosinusoidal AC stimulus

As we know, AC stimulus could be treated as a periodic stimulus input or may
result from the synchronized activity in connected brain areas. In this section,
we choose the form of cosinusoidal AC stimulus to research firing patterns and
the firing rate when varying the stimulus frequency. Fig. 3 is the diagram of ISIs
with respect to frequency for stimulus current at A = 0.4 and A = 1.0. It is
obvious that amplitudes of 0.4 and 1.0 can inspire the model to produce discharge
phenomenon at a large range of frequencies. By increasing the stimulus frequency,
ISIs sharply shorten from thousands of milliseconds to hundreds of milliseconds and
the model discharges from bursting to tonic spiking and finally reaches a steady
state. Furthermore, the firing patterns alternate between periodic discharge and
chaotic firing. We may draw a conclusion from the above analysis that the neuron
is particularly sensitive to change in the stimulus frequency.

Fig. 4 is the diagram of the average firing rate with respect to frequency for
stimulus current at A = 0.4 and A = 1.0. The average firing rate does not monoton-
ically change as stimulus frequency changes, but achieves a maximum value (when
A =04, f =024, fp = 4.229 or when A = 1.0, f € [6.32,6.36], fr = 6.343).
The neuron fires at a high rate and discharges more in a stimulus cycle. Subse-
quently, the average firing rate first increases and then decreases periodically as the
frequency increases. And the secondary maximum still exists, even at a relatively
large amplitude.
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Fig. 3 Interspike intervals (ISIs) with respect to stimulus frequency f. a: A = 0.4;
b: A =1.0. With the increase of the stimulus frequency, ISIs reduce quickly.

Fig. 4 Firing rate with respect to stimulus frequency f. a: A =04; b: A= 1.0.
The red horizontal line represents the values of firing rate without external current
stimuli.

We choose Texy = Acos(2rm ft) where A = 0.4. First of all, we propose the defi-
nition of p : ¢ phase-locking: a periodic oscillation is defined as p action potentials
produced by ¢ cycle motivations [19]. Here, we use an abbreviation RPL (ratio
of phase-locking) to denote it. With a stimulus frequency range f € [0.1,20] [Hz]
increasing in steps of 0.1 [Hz], the basic information of the phase-locking ratios for
the Huber-Braun model is illustrated in Tab. II.

In Tab. II, with the frequency ranges f € [0.1,2.9] [Hz], f € [3,3.3] [Hz],
and f € [3.4,6.9] U [7.4,20] [Hz], three types of phase-locking ratios appear, i.e.
alternating between chaos and p: 1(p > 1), 1: 1, from 1: g to 2: ¢(¢ > 1) passing
through the chaotic region, respectively. In the [7, 7.3] region, the phase-locking
ratio appears 6:18 mode. Rather than showing all of the frequencies, listed these
ranges were picked to show the entrainment modes, ISIs and the return maps of
ISIs. Here the frequencies 0.8 [Hz], 7.2 [Hz|, 10 [Hz] and 11.4 [Hz] are selected to
show the characteristics of RPL sections p : 1, 6:18, chaos, and 2 : q, respectively.
From Fig. 5, we find that ISIs are periodic in the phase-locking patterns whose
return maps are regular too, while ISIs are out-of-order, when the corresponding
return map is irregular too. Besides the frequencies mentioned above, simulations
were taken in all the other frequencies, and we found: in p : 1 section, as the
frequency increases, the value of p : 1 decreases, and the number of maximal ISIs
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f 0.1 0.2 0.3 0.4-0.7 0.8 09-14
RPL chaos 19:1 14:1 chaos 4:1 chaos

f 1.5 1.6-2.9 3-3.3 3.4-5.1 5.2-5.8 5.9-6.9
RPL 2:1 chaos 1:1 chaos 1:2 chaos

f 7-7.3 7.4-8.7 8.8-10.1 10.2-11.2 11.3-11.6 11.7-13.5
RPL 6:18 1:3 chaos 1:4 2:9 chaos

[ 13.6-14.1 14.2 14.3-14.5 14.6-16.5 16.6 16.7-18.7
RPL 1:5 chaos 2:11 chaos 1:5 chaos

f 18.8 18.9-19.1 19.2 19.3-20
RPL 1:6 chaos 2:13 chaos

Tab. IT The p : q phase-locking of the Huber-Braun model with the stimulus fre-
quency.

is also decreasing, which holds true for 2 : ¢ section; in 1 : ¢ section, the value
of 1 : q decreases when the frequency increases; ISIs are periodic in phase-locking
patterns and chaotic in chaotic patterns. So we can come to the conclusion that
the frequency of the external current stimulus plays a significant role in transitions,
in the Huber-Braun model, from periodic patterns to chaotic patterns, or from one
periodic pattern to another periodic pattern.

3.2.2 Response of the neuron to cosinusoidal AC stimulus of amplitudes
dependent on frequency

AC stimulus of amplitudes dependent on frequency may be understood as some
kind of current noise. For the Huber-Braun model, many literatures related to
the Gaussian white noise have been extensively investigated [1, 3, 4, 5, 6, 8, 14].
Here we propose another current noise which is easier to operate in the experiment.
Compared with the Gaussian white noise, the current noise implemented here could
induce more abundant dynamical phenomena.

The diagrams in Fig. 6 illustrate ISIs bifurcation phenomena that plot ISIs ver-
sus frequency for the stimulus current I = (A4/(27f)) cos(2w ft) at A = 0.4 and
A =1.0. It is totally different from the normal type of AC stimulus as previously
described. Bifurcation phenomena are more varied. A special transition pattern
(from multi-period bursting to chaos to regular spiking) periodically appears if
frequency is increased. This periodic variation phenomenon may imply some po-
tential roles in sensory information encoding and it deserves further experimental
investigation into oscillatory activity with the addition of noise.

The diagrams in Fig. 7 illustrate the firing rate versus stimulus frequency for the
stimulus current Iy = (A/(27f)) cos(2rft) at A = 0.4 and A = 1.0. Compared
with Fig. 4, the changes are relatively simple. We achieve a maximum value (when
A =04, fr =9.829 or when A = 1.0, fr = 13.629) when f = 0.016. Despite the
different stimulus amplitude, the maximum is obtained at the same point. After
the extreme value point, the average firing rate decreases when the frequency is
increasing, without changing periodically. What’s more, in this circumstance, the
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= = =
= =3

Fig. 5 Fizing amplitude at A = 0.4, we get the typical discharge and IS1s sequences.
(a) plots membrane potentials during a 4 second steady-state period. (b) shows the
evolution of ISIs. The return map of ISIs is given in (c). A: Entrainment mode of
p: 1 at stimulus frequency of 0.8 [Hz[; B: Entrainment mode of 6 : 18 at stimulus
frequency of 7.2 [Hz[; C: Entrainment mode of chaos at stimulus frequency of
10 [Hz]. D: Entrainment mode of 2 : q at stimulus frequency of 11.4 [Hz]. The
45° line of the third column indicates the positions of identical values which reflects
regular tonic firing.

Fig. 6 Interspike intervals (ISIs) with respect to stimulus frequency f. a: A = 0.4;
b: A =1.0. The diagram in the top right corner is an enlargement of diagram a.
With the increase of the stimulus frequency, ISIs reduce quickly.
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Fig. 7 Firing rate with respect to stimulus frequency f. a: A =0.4; b: A= 1.0.
The diagrams in the top right corner is an enlargement of diagram a and b, respec-
tively. With the increase of the stimulus frequency, the firing rate of the neuron
increases first, then reduces to 1.714 which is quite close to the firing rate without
external current stimuli, and finally reaches a steady state. The red horizontal line
represents the values of firing rate without external current stimuli.

neuron is more prone to discharge in an ultra-low frequency range (0 to 1.0 [Hz]).
The value of the initial discharge is also different. When A = 0.4, the minimal
firing rate is 0.143 [Hz], which is very close to zero. Nevertheless, when A = 1.0,
the situation is rather different: the minimal firing rate jumps to 9.771 [Hz]. This
indicates that the changes in amplitude influence the initial value of the discharge
to a great degree.

4. Fast-slow dynamics analysis

In this section, we use the fast-slow dynamic analysis to investigate the dynamical
properties of the Huber-Braun model. The variable of the slow repolarizing variable
agr is relatively slow, with the time constant 75, = 160 [ms]. Therefore the fast-slow
method can be implemented in the condition that ag, is choosen as a slowly-varying
bifurcation parameter.

Codimension-two bifurcation analysis of the fast subsystem Eqgs. (1), (4) and
(5) is performed in the (as., B) plane, as shown in Fig. 8. There are four impor-
tant codimension-two bifurcation points, namely, the cusp (CP), fold-Hopf (ZH),
Bogdanov-Takes (BT) and generalized Hopf (GH) bifurcations. Some data re-
lated to these four special points are listed in Tab. ITI. The bifurcation curves in
Fig. 8 display how the one-parameter bifurcations (including the supercritical Hopf
(suph), subcritical Hopf (subh), fold (f; and f2) bifurcations of equilibrium point,
and the fold limit cycle (1) bifurcations of limit cycles) vary with the parameters.

Each point in the fold bifurcation curves f; and fs is an equilibrium point with
a zero eigenvalues A\; = 0 and the other two eigenvalues have nonzero real parts. In
general, the restriction of the fast subsystem to the center manifold has the normal
form

¢ =ag” + 0(I]°), € e R". (11)

When the parameters ag, and B vary, two bifurcation curves f; and f5 coalesce and
disappear at the cusp point CP (0.8364, -4.7953) where the eigenvalues are A; = 0,
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Fig. 8 The codimension-two bifurcation analysis of the fast subsystem with re-
spect to the parameters ag, and B. The labels indicate the following bifurcations:
CP = cusp, ZH = fold-Hopf, BT = Bogdanov-Takens, GH = generalized Hopf (or
Bautin). Besides, suph and subh separately represent the supercritical and subcriti-
cal Hopf bifurcation curves; f1 and fo are the fold bifurcation curves; | corresponds
to the fold bifurcation of limit cycles. The diagram in the top right corner is an

enlargement near CP; the diagram in the bottom left corner is an enlargement near
BT.

Points  Parameter values (as,, B) Eigenvalues A1, Ao, A3
CP (0.8364, —4.7953) A1 =0, Ay 3 = —0.0472998 + 0.118635¢
ZH (0.8295, —4.7121) A1 =0, Ay 3 = £0.1223¢
BT (0.2836, 2.3782) A2 =0, Az = 1.05089
GH (0.0169, 4.9733) A1 = 0.128002, g3 = +0.03463614%

Tab. III Data related to the special points.

A2,3 = —0.0472998 £+ 0.118635i. At this point, the coefficient a of normal form in
Eq. (11) vanishes; namely, a = 0. Then, the restriction of the fast subsystem to
the center manifold becomes the normal form

¢ =c+0(¢"), e R, (12)
where ¢ = —2.026808 x 10~°.
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Near the point CP, the Egs. (1), (4) and (5) are locally topologically equivalent

to the normal form
& =B+ B2k + 083,
n.=-n-, (13)
ny =N+,

where o = sign(c) = -1, nL € R, B12 € R.

Fig. 9 Typical one-parameter bifurcation diagrams of the fast subsystem with the
variation of B. a: B = —6 [nA]; b: B = 0.8 [nA]. Stable steady states are marked
by red curves; unstable steady states by black curves. The blue cycles indicate the
limit cycles. H stands for the supercritical Hopf bifurcation. LPy and L P> represent
the fold bifurcations.

With further varying of the parameters, a fold-Hopf (ZH) bifurcation emerges
at the point labeled ZH (0.8295, —4.7121) with one zero eigenvalue A; = 0 and
a pair of complex conjugate eigenvalues Ay 3 = £0.1223¢. Near the point ZH, the
Egs. (1), (4) and (5) are locally topologically equivalent to the normal form

& =P+ &+ sp?,
14
U e 14
where s = —1, § = —280.6281. The point ZH is the intersection point of the

supercritical Hopf bifurcation curve suph and the upper fold bifurcation curve fs.

A Bogdanov-Takes bifurcation takes place at the point labeled BT (0.2836,
2.3782) with two zero eigenvalues A1 2 = 0 and one real eigenvalues A3 = 1.05089.
Near the point BT, the Egs. (1), (4) and (5) are locally topologically equivalent to

the normal form .
{ 771 = n2’ (15)

ny = B+ Bany + 15 + smn2,

where a = 2.275099 x 1075, b = 1.790721 x 10~*, s = sign(ab) = 1. The point BT
is the tangency point of subcritical Hopf bifurcation curve subh and the upper fold
bifurcation curve fs.

A generalized Hopf bifurcation takes place at the point labeled GH (0.0169,
4.9733) with one real eigenvalue \; = 0.128002 and a pair of complex conjugate
eigenvalues g3 = £0.0346361:. At the point GH, the first Lyapunov coefficient
vanishes; that is, [; = 0. Near the point GH, the Egs. (1), (4) and (5) are locally
topologically equivalent to the normal form

{ 2= (B141)z + B22]2|? + sz|z|*, 2 € CL,
/

n—=-—-n-, (16)
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where I is the second Lyapunov coefficient and s = sign(ly) = sign(—2.119903 x
1073) = —1. The point GH separates the branch of the supercritical Hopf (suph)
and subcritical Hopf (subh) bifurcations.

When the parameter B increases from the down to upper in Fig. 8, the one-
parameter bifurcation diagram changes from a monotone curve (Fig. 9a) to a Z-
shaped curve (Fig. 9b). Furthermore, the type of equilibrium points is also chang-
ing.

5. Conclusions

Based on the Huber-Braun model, the impacts of external current stimuli (DC and
AC) on neuronal firing patterns are researched. In the present research, our main
findings are:

(1) The model exhibits abundant firing patterns under DC stimulus. With the
increase of DC stimulus intensity B, a period-doubling bifurcation phenomenon
takes place. After the period-doubling cascade, the model enters into chaos. When
B > 0.66 [nA], the model exhibits an inverse period-adding bifurcation. What’s
more, the firing rate changes irregularly in chaotic areas and decreases suddenly at
the point when the discharge pattern transforms from one to another.

(2) For cosinusoidal AC stimulus, at first, interspike intervals (ISIs) sharply
shorten from thousands of milliseconds to hundreds of milliseconds by increasing
the stimulus frequency. Furthermore, periodic firing and chaotic firing alternately
appear; the firing rate first increases and then decreases periodically. At last, a
lot of phase-locking patterns have been observed. Similar phenomena are also
found by Wang et al. [19] in Hodgkin-Huxley model, but no one puts forward these
phenomena in the Huber-Braun model so far.

(3) We propose another current noise in a manner of external current stimulus.
With the addition of noise, a special transition mode (from multi-period bursting
to chaos to regular spiking) periodically appears. Besides, the maximum value of
the firing rate is independent on the stimulus amplitude.

(4) By using codimension-two bifurcation analysis of the fast subsystem, we give
a theoretical description of the basic mechanism. We not only detect the properties
of the codimension-two bifurcation points, but also provide the normal form of the
fast subsystem to the center manifold. Research on this model rarely involved in
this aspect. Our work intends to fill this gap.

The results in this paper can be used to guide a further investigation of dy-
namical properties of the model in response to external current stimuli, allowing
one to predict the dynamics emerging in distinct types of input information. Our
investigation may have significant implications for further study of the effect of
external current stimuli on an organism and may establish a possible instruction
on further biological experiments.
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